【技术实现步骤摘要】
一种用于动态目标3D检测的方法和装置
本专利技术涉及计算机视觉技术应用领域,具体的涉及3D动态目标(如汽车、行人)的检测的方法、装置。
技术介绍
计算机视觉是指计算机通过处理各种传感器如相机、激光雷达、毫米波雷达等传感器的原始数据,从中提取出周围的环境信息。其功能类似于人的视觉神经系统,识别出环境中所有存在的物体并确定其位置、大小、朝向、速度等信息。计算机视觉在自动驾驶汽车领域和移动机器人领域有很大的用处。计算机视觉技术可以为自动驾驶汽车提供车辆周围的环境信息,如道路、障碍物、车辆、行人等的位置、朝向、速度等信息。这些感知信息可以为自动驾驶汽车决策和控制提供有力的支持,取代人驾驶汽车的现状。自动驾驶汽车由感知数据和车体动力学模型得出控制系统对应的转向和速度,以确保车辆在可通行区域行驶,达到车辆在道路上安全行驶的目的。计算机视觉动态目标3D检测不同于传统2D目标检测任务。传统目标检测任务需要识别图像上存在的物体,给出其对应的类别,并且输出物体在图像上的最小2D包围框。2D物体检测所能提供环境感知信息无法满足自动驾驶场景的感知要求。自动驾驶汽车需要获取障碍物、车辆、行人等的位置、长宽高和偏转角等更加详细的信息,从而支持自动驾驶汽车的运动规划和控制。3D物体检测任务在2D物体检测的基础上,需增加输出物体在三维空间的长宽高和旋转角等信息。而目前纯视觉3D物体检测在准确率上比较低。
技术实现思路
针对现有技术的缺陷,本专利技术提供一种用于动态目标3D检测的方法和装置,在进行3D物体检测任务时 ...
【技术保护点】
1.一种用于动态目标3D检测的方法,其特征在于,包括以下步骤:/n通过时间戳对齐方式同步获取相机图像数据及激光雷达点云数据,并对激光雷达点云数据进行剪切;/n对剪切后的所述点云数据进行立体像素栅格化处理并投影成6通道鸟瞰图;/n对所述图像数据及所述6通道鸟瞰图进行特征提取,获取图像数据特征图层和鸟瞰特征图层;/n结合先验3D锚框,在图像数据特征图层和鸟瞰特征图层中框选候选区域,提取候选区域特征向量并融合,生成3D候选锚框;/n利用所述3D候选锚框分别提取所述图像特征图层和所述鸟瞰特征图层的特征crops并融合生成特征向量;/n根据所述特征向量生成3D边界框,对所述3D边界框进行朝向回归及分类处理,完成动态目标的3D检测。/n
【技术特征摘要】
1.一种用于动态目标3D检测的方法,其特征在于,包括以下步骤:
通过时间戳对齐方式同步获取相机图像数据及激光雷达点云数据,并对激光雷达点云数据进行剪切;
对剪切后的所述点云数据进行立体像素栅格化处理并投影成6通道鸟瞰图;
对所述图像数据及所述6通道鸟瞰图进行特征提取,获取图像数据特征图层和鸟瞰特征图层;
结合先验3D锚框,在图像数据特征图层和鸟瞰特征图层中框选候选区域,提取候选区域特征向量并融合,生成3D候选锚框;
利用所述3D候选锚框分别提取所述图像特征图层和所述鸟瞰特征图层的特征crops并融合生成特征向量;
根据所述特征向量生成3D边界框,对所述3D边界框进行朝向回归及分类处理,完成动态目标的3D检测。
2.根据权利要求1所述的方法,其特征在于,所述的对剪切后的所述点云数据进行立体像素栅格化处理并投影成6通道鸟瞰图,包括:
将剪切后的所述点云数据沿z轴方向等分成5个区域,对每个区域内的所有点云进行投影生成鸟瞰图层;
计算每个鸟瞰图层中的点云密度,并构建第6通道鸟瞰图。
3.根据权利要求1所述的方法,其特征在于,所述的对所述图像数据及所述6通道鸟瞰图进行特征提取,获取图像数据特征图层和鸟瞰特征图层,包括:
采用Depth-wise卷积与Point-wise卷积相结合的方式对所述图像以及6通道鸟瞰图进行8倍下采样,然后利用FeaturePyramidNetwork网络对所述图像以及6通道鸟瞰图进行8倍上采样,生成与原始图片尺寸相同的图像特征图层和6通道鸟瞰特征图层。
4.根据权利要求1所述的方法,其特征在于,所述的结合先验3D锚框,在图像数据特征图层和鸟瞰特征图层中框选候选区域,提取候选区域特征向量并融合,生成3D候选锚框,包括:
利用所述先验3D锚框扫描所述图像数据特征图层和所述鸟瞰特征图层,得到第一感兴趣区域;
对所述第一感兴趣区域进行特征提取,得到相同长度的图像数据特征向量和鸟瞰特征向量;
通过element-wise均值处理,对所述图像数据特征向量和鸟瞰特征向量进行融合,生成融合特征crops;
所述融合后的特征crops通过一个256维度的全连接层得到3D候选锚框。
5.根据权利要求1所述的方法,其特征在于,所述的利用所述3D候选锚框分别...
【专利技术属性】
技术研发人员:漆梦梦,陶靖琦,杨贵,施忠继,刘奋,
申请(专利权)人:武汉中海庭数据技术有限公司,
类型:发明
国别省市:湖北;42
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。