【技术实现步骤摘要】
一种基于计算机视觉技术的驾驶员抽烟检测方法及系统
本专利技术涉及车辆安全系统的危险驾驶检测
,具体涉及一种基于计算机视觉技术的驾驶员抽烟检测方法及系统。
技术介绍
目前,私家轿车越来越多,而且交通越来越发达,人们驾车出行的频率相比以前大大增加。虽然驾车次数增加,但是人们的安全防范意识却没有相应的增强。在这种情况下如何保障驾车安全是一个很重要的问题。在所有驾驶事故中,开车抽烟是其中最大的一个事故诱发原因,但是目前针对开车抽烟却没有很好的预防措施。随着国内政府出台主动安全驾驶规范,以及主动安全市场的爆发,市场上出现了一些防止疲劳驾驶的设备,能检测驾驶员是否在驾驶过程中抽烟,但是这些设备都是基于神经处理器(NPU)或者图像处理器(GPU)硬件,然后在此硬件上面运行基于深度学习的抽烟检测算法来实现的。尽管基于深度学习的算法性能普遍较高,但由于深度学习算法对硬件性能要求很高,因此这种设备普遍价格较高,主要用于专业的车队管理,对于民用市场的普通汽车驾驶员,由于硬件笨重复杂,价格昂贵,因此设备可适用性不强。专 ...
【技术保护点】
1.一种基于计算机视觉技术的驾驶员抽烟检测方法,其特征在于,包括以下步骤:/n通过摄像头获取外部图像信息,实时进行人脸检测;/n当检测到人脸时,通过比较所有检测到的人脸区域大小,选取最大人脸区域对应的图像作为后续分析的人脸图像;/n对所得到的最大人脸区域对应的人脸图像进行区块划分,获取人脸嘴部区块;/n调用运行抽烟检测模块,对所述嘴部区块进行检测;/n所述抽烟检测模块包括多个抽烟检测子模块,若有任一所述抽烟检测子模块检测到抽烟行为,则保存对应抽烟位置,并停止运行其他抽烟检测子模块;/n其中,多个所述抽烟检测子模块中检测抽烟行为的算法通过如下的建模训练步骤而建立:/n特征提取 ...
【技术特征摘要】
1.一种基于计算机视觉技术的驾驶员抽烟检测方法,其特征在于,包括以下步骤:
通过摄像头获取外部图像信息,实时进行人脸检测;
当检测到人脸时,通过比较所有检测到的人脸区域大小,选取最大人脸区域对应的图像作为后续分析的人脸图像;
对所得到的最大人脸区域对应的人脸图像进行区块划分,获取人脸嘴部区块;
调用运行抽烟检测模块,对所述嘴部区块进行检测;
所述抽烟检测模块包括多个抽烟检测子模块,若有任一所述抽烟检测子模块检测到抽烟行为,则保存对应抽烟位置,并停止运行其他抽烟检测子模块;
其中,多个所述抽烟检测子模块中检测抽烟行为的算法通过如下的建模训练步骤而建立:
特征提取阶段:用局部二进制特征LBP抽取通用数据库和红外图像数据库中图像的抽烟区域和非抽烟区域的图像特征;
正负样本构建阶段:将通用数据库和红外图像数据库中的图像进行分类得到抽烟区域图像和非抽烟区域图像,并且根据手拿烟的不同姿势,分别对应地将区域图像缩放到不同大小;
原始训练阶段:对通用数据库中的图像采用传统的FloatBoosting算法进行强分类器的构建,分类器所用的特征是LBP,得到通用FloatBoosting模型;
转移学习阶段:对红外图像数据库中的图像采用所述通用FloatBoosting模型进行强分类器的构建,并且同时兼顾通用数据库上面所得到的模型,优化特定的训练目标方程,使得所得到的模型既具有通用模型的特点又具有红外图像数据的特点;
检测阶段:利用转移学习阶段得到的红外强化FloatBoosting模型,在红外图像上面用基于级联模型结构对抽烟区域进行检测,并且对得到的多个潜在的抽烟区域进行平均,取多个抽烟区域的平均位置作为所述嘴部区块;
抽烟区域分类阶段:利用边缘检测算法来检测所述嘴部区块内存在的所有的物体边缘信息,如果物体边缘信息跟预先存储的实际抽烟的边缘信息吻合,则判定检测到的区域包含抽烟行为,不吻合则判定为非抽烟行为。
2.根据权利要求1所述的基于计算机视觉技术的驾驶员抽烟检测方法,其特征在于,检测人脸的算法步骤包括:
特征提取阶段:用局部二进制模式LBP和局部梯度模式LGP抽取通用数据库和红外图像数据库中图像的人脸和非人脸的图像特征;
正负样本构建阶段:将通用数据库和红外图像数据库中的图像进行分类得到人脸图像和非人脸图像,将所述人脸图像和非人脸图像均缩放到40×40像素,并且根据人脸的不同姿态将每个人脸划分为不同的子集;
原始训练阶段:对通用数据库中的图像采用传统的VectorBoosting算法进行级联分类器的构建,分类器所用的特征是LBP特征和LGP特征的结合,得到通用VectorBoosting模型;
转移学习阶段:对红外图像数据库中的图像采用通用VectorBoosting模型进行级联分类器的构建,并且同时兼顾通用数据库上面所得到的模型,优化特定的训练目标方程,使得所得到的模型既具有通用模型的特点又具有红外图像数据的特点;
检测阶段:利用转移学习阶段得到的红外强化VectorBoosting模型,在红外图像上面用基于矢量树模型结构对人脸区域进行检测。
3.根据权利要求1所述的基于计算机视觉技术的驾驶员抽烟检测方法,其特征在于,在所述检测抽烟行为的算法步骤中,在原始训练阶段所用的FloatBoosting目标方程为:
hm=argminLoss(HM-1(x)+h(x))
其中x是输入特征向量,h(x)是弱分类器,HM代表由M个弱分类器组合而来的强分类器,hm代表第m个弱分类器;yi代表第i个实例的标签,Loss代表针对某个分类器的损失函数,exp代表指数函数;
在转移学习阶段所用的优化方程是:
其中,KL代表通用模型和红外强化模型之间的KL距离,λ是一个权重,用以平衡两种损失。
4.根据权利要求1所述的基于计算机视觉技术的驾驶员抽烟检测方法,其特征在于,
所述边缘检测算法为基于sobel算子的边缘检测算法。
5.根据权利要求1所述的基于计算机视觉技术的驾驶员抽烟检测方法...
【专利技术属性】
技术研发人员:王海,邹尧,王天峥,
申请(专利权)人:德瑞姆创新科技深圳有限公司,
类型:发明
国别省市:广东;44
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。