【技术实现步骤摘要】
基于SA-PSO的工程应用预测方法
本专利技术涉及数据预测领域,更具体地,涉及一种基于SA-PSO的工程应用预测方法。
技术介绍
灰色预测模型是灰色系统理论的一个重要组成部分,因其具有建模过程简单、所需样本少等优点,目前已成功应用到了电力、农业、管理、经济、高新技术产业等领域。灰色预测模型种类较多,由于众多原因,实际中存在很多原始数据不完整、样本序列为非等间距的情况,针对非等间距数据序列,非等间距GM(1,1)模型是应用最广泛的、最重要的灰色预测模型。传统非等间距GM(1,1)模型的预测精度易受背景值、初始条件的影响,当背景值和初始条件构造不合理时会出现预测失真、振荡现象,从而导致预测模型的适用性降低甚至不可用。因此,有必要开发一种预测精度高、适用性强的基于SA-PSO的工程应用预测方法。公开于本专利技术
技术介绍
部分的信息仅仅旨在加深对本专利技术的一般
技术介绍
的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。
技术实现思路
本专利技术提出了一种基于SA-PSO的工程应用预测方法,其能够通过对背景值进行重构,计算初始条件对应的最优时 ...
【技术保护点】
1.一种基于SA‑PSO的工程应用预测方法,其特征在于,包括如下过程:步骤1:获取工程数据,建立非等间距GM(1,1)模型的原始数据序列X
【技术特征摘要】
1.一种基于SA-PSO的工程应用预测方法,其特征在于,包括如下过程:步骤1:获取工程数据,建立非等间距GM(1,1)模型的原始数据序列X(0)=(x(0)(k1),x(0)(k2),…,x(0)(kn));步骤2:对所述原始数据序列X(0)作1-AGO处理,得到1-AGO序列X(1),其中,i、j为数据序号,Δkj=kj-kj-1,Δk1=1;步骤3:根据所述1-AGO序列X(1),生成背景值Z(1)、计算矩阵B和Y,获得所述非等间距GM(1,1)模型的表达式为x(0)(ki)Δki+az(1)(ki)=b,通过最小二乘参数估计获得参数序列为其中,a为发展系数,b为灰作用量,步骤4:通过模拟退火算法和粒子群优化算法,确定背景值和初始条件的最优自适应参数p*与δ*;步骤5:利用步骤4所得的最优自适应参数p*重构背景值,建立所述非等间距GM(1,1)模型,利用步骤4所得的最优自适应参数δ*重构初始条件,求解所述非等间距GM(1,1)模型的白化微分方程的时间响应函数,即为所述1-AGO序列X(1)的模拟预测序列通过累减还原获得所述原始数据...
【专利技术属性】
技术研发人员:吴紫恒,王兵,周芳,
申请(专利权)人:安徽工业大学,
类型:发明
国别省市:安徽,34
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。