一种应用于多智能体间相对距离控制及自适应矫正方法技术

技术编号:21058724 阅读:33 留言:0更新日期:2019-05-08 06:09
本发明专利技术公开了一种应用于多智能体间相对距离控制及自适应矫正方法;可以有效保证多智能体之间的相对距离的控制,避免多智能体之间的碰撞,通过使用ESO可以使系统具有很强的适应性及鲁棒性。另外,设计了一种基于自适应检测点配置的横向校正算法,通过自适应动态设置分段检测点,根据设定的阈值判断自适应调整剩下路线内的检测点数量,可以提高整个系统的时效性。在每个检测点矫正偏移轨迹的距离,使整个多智能体系统中跟随者准确跟随领导者,保证了整个多智能体系统的一致性。并且该算法不需要复杂的通信协议和更高的实时信息处理能力。

A Method for Relative Distance Control and Adaptive Correction between Multi-Agents

【技术实现步骤摘要】
一种应用于多智能体间相对距离控制及自适应矫正方法
本专利技术涉及多智能体领域,研究了关于多智能体间相对距离控制问题,具体提出了一种应用于多智能体间相对距离控制及自适应矫正方法。
技术介绍
随着人工智能、通信及信息等技术的发展,多智能体的研究近年来一直是很多人关注的研究热点。多智能体系统可以被广泛应用于公共设施检测、灾难环境调查、军事侦察、仓储搬运等领域,无论在军用方面还是在民用都得到了广泛应用。在实际应用过程中多智能体间的相对距离的控制往往至关重要,多智能体间相对距离控制往往是指跟随者与领导者之间的相对距离控制,领导者可以是某一个智能体作为领导者,也可以是虚拟领导者(通常为编队几何中心,如图1所示),其他成员与领导者保持一定的相对距离。多智能体之间精确地相对距离控制可以保证系统内部成员之间的防碰撞,以及整个多智能体系统的编队控制。尤其是在外部产生很大的干扰时,比如空中智能体遇到阵风、地面智能体遇到负载变化等一些外部干扰时,如何使系统可以表现出很强的适应性和鲁棒性,保证多智能体编队控制成为多智能体系统在实际应用中过程中需关注的问题。另外一个问题是由于路线的偏转以及外部的干扰,相对距离的本文档来自技高网...

【技术保护点】
1.一种应用于多智能体间相对距离控制及自适应矫正方法,其特征在于,具体包括以下步骤:步骤一:在多智能体系统相对距离控制中,建立一阶控制模型,模型建立过程如下:受控对象是跟随者与领导者之间的相对位置,观察对象是跟随者与领导者之间的距离,假设一阶受控对象模型如下:

【技术特征摘要】
1.一种应用于多智能体间相对距离控制及自适应矫正方法,其特征在于,具体包括以下步骤:步骤一:在多智能体系统相对距离控制中,建立一阶控制模型,模型建立过程如下:受控对象是跟随者与领导者之间的相对位置,观察对象是跟随者与领导者之间的距离,假设一阶受控对象模型如下:其中,u是控制输入,d是系统的输出,b是控制量系数,f(d,w,t)是和当前相对距离和扰动有关的函数,是系统的总的扰动;系统的误差e=dg-d,dg系统给定距离,为实际跟随者与领导者之间需要的相对距离,则系统的误差状态方程为其中为系统误差的状态变量,为给定距离的状态变量;采用非线性状态误差反馈空置率进行误差收敛得到其中k为控制增益,α为非线性指数,0<α<1,fal(e,α,h)为反馈控制规律,通常情况选其中h为平衡点线性区范围,sgn(x)为符号函数;步骤二:建立扩张状态器模型;将总的扰动f(d,w,t)扩张成一个新的状态变量x2,则系统变为系统建立的扩张状态观测器为:其中β1和β2是ESO的增益,ε为状态观测器系统误差;步骤三:结合ESO和PD控制器实现相对距离控制;扩张状态观测器根据系统的输出d和系统的控制输入u来实现系统输出和干扰的实时观测,其中z1对应系统的输出d,z2对应系统总的干扰f(d,w,t);则此时扩张状态观测器写为:其中Kp和Kd是PD控制器的控制增益,u0设定通过ESO和PD控制器的输入中间变量;步骤四:根据智能体在每个检测点处对应的位置,计算出相对于检测点的偏移距离和偏移角;假设多智能体的起始位置分别是S和E,相对应的纬度和经度坐标是(LA0,LO0),(LAn,LOn),整个路线其实设置n+1...

【专利技术属性】
技术研发人员:李闯陈张平孔亚广侯志鹏陈宇波申浩杨小岗娄雨靖
申请(专利权)人:杭州电子科技大学
类型:发明
国别省市:浙江,33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1