当前位置: 首页 > 专利查询>浙江大学专利>正文

基于多采样率自回归分布滞后模型的高炉指标预测方法技术

技术编号:20389968 阅读:52 留言:0更新日期:2019-02-20 02:53
本发明专利技术公开了一种基于改进多采样率自回归分布滞后模型的高炉生产指标预测方法,属于工业过程监控、建模和仿真领域。模拟高炉炼铁这个连续生产过程,即炉料自上而下、煤气自下而上逆流接触完成反应产生铁水的过程,在多采样率模型中通过高频解释变量预测低频被解释变量,提出停留时间分布作为权重函数,同时利用自适应遗传算法用于参数估计,最后选取解释变量,根据相关性分析确定模型输入输出变量。本发明专利技术方法对于时间序列数据具有很好的拟合效果,能够广泛应用于具有多采样率特性、滞后效应的工业动态系统的预测与优化。

【技术实现步骤摘要】
基于多采样率自回归分布滞后模型的高炉指标预测方法
本专利技术属于工业过程监控、建模和仿真领域,特别涉及一种改进MIDAS-ADL预测高炉炼铁生产技术指标的方法。
技术介绍
钢铁制造流程中,以大型高炉为主的大型炼铁系统是铁素物质流转换的关键工序,也是能耗最大、排放最多、生产成本最高的环节,分别占钢铁综合能耗的65%~75%、钢铁大气污染物排放总量的80%左右、钢铁制造总成本的60%~70%。另外,作为钢铁流程的前端关键工序,炼铁系统的生产质量和效率决定着整个钢铁制造流程的钢材质量和生产效率。由此可见,大型炼铁系统是钢铁流程深度节能降耗减排和提质增效的前沿阵地。我国多数大型炼铁系统的原燃料禀赋差且成分多变,运行工况频繁波动且规律难以把握。此外,大型炼铁系统的场相耦合与非线性多参数耦合异常复杂,表征运行性能的关键参数难以在线检测,使得以人工经验知识为主的炼铁系统的操作调控不及时,生产长时间处于非最优状态,造成能耗高、效率低以及产品质量的不稳定。因此,亟需在现有炼铁生产自动化与信息化的基础上,深度融合炼铁专家知识、操作经验与智能技术,实现信息深度感知、智慧优化决策和精准协调控制,以提高我国大本文档来自技高网...

【技术保护点】
1.一种基于改进多采样率自回归分布滞后模型的高炉生产指标预测方法,其特征在于:在多采样率模型中通过高频解释变量预测低频被解释变量,提出停留时间分布作为权重函数,同时利用自适应遗传算法用于参数估计,最后选取解释变量,根据相关性分析确定模型输入输出变量;所述的多采样率模型表达式为:

【技术特征摘要】
1.一种基于改进多采样率自回归分布滞后模型的高炉生产指标预测方法,其特征在于:在多采样率模型中通过高频解释变量预测低频被解释变量,提出停留时间分布作为权重函数,同时利用自适应遗传算法用于参数估计,最后选取解释变量,根据相关性分析确定模型输入输出变量;所述的多采样率模型表达式为:Y为被解释变量,X为解释变量,α为常数项,β为解释变量的总体乘数,γj为延迟系数,μt为随机扰动项,ωi(θ)为权重函数,p、q为X、Y的最大滞后阶数,m为高采样率比低采样率的倍数;所述的权重函数表达式为:i和imax是权重函数当前滞后阶数和最大滞后阶数,θ为参数向量。2.根据权利要求1所述的方法,其特征在于:所述的自适应遗传算法用于多采样率模型中的参数估计:通过在迭代过程中计算种群个体适应度函数分布并根据...

【专利技术属性】
技术研发人员:周恒杨春节
申请(专利权)人:浙江大学
类型:发明
国别省市:浙江,33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1