一种基于深度卷积神经网络的模式识别方法技术

技术编号:20222285 阅读:46 留言:0更新日期:2019-01-28 20:38
本发明专利技术公开了一种基于深度卷积神经网络的模式识别方法,主要是一种基于深度卷积神经网络,引入attention机制及图像增强手段的模式识别方法。首先拿到样本数据集,由相关专业人员对数据集图像进行标注,对图像做灰度处理,这样可以凸显出主要目标的轮廓,有利于特征提取,然后利用随机旋转不同角度对数据集进行扩充,再对图像数据做增强以及数据预处理,最后构建出能够高效提取图像特征的深度卷积神经网络,用建立好的数据集进行五折交叉验证对模型进行训练并测试,完成视觉辅助检测模型的构建。本发明专利技术在样本识别时运算效率更高,而模型参数减少,降低了资源的占用,以及对软硬件的高需求,可以更好投入到实际使用。

【技术实现步骤摘要】
一种基于深度卷积神经网络的模式识别方法
本专利技术属于深度学习计算机视觉领域,主要是一种基于深度卷积神经网络,引入attention机制及图像增强手段的模式识别方法。
技术介绍
“特征提取+分类器”是模式识别领域的经典框架,即通过人力构建特征对图像进行表示,再将特征层面的图像数据送入分类器实现目标图像的分类识别。神经学研究表明人类大脑在处理视觉图像的过程并没有对特征进行抽取,而是将信号传入到一个由大量神经元组成的深度网络并层层传递最终得到信号的隐式表达。深度学习正是通过模拟人脑信号的传输过程让图像在网络中传播并输出图像的有效表示。卷积神经网络作为目前广泛应用的深度模型在计算机视觉及图像处理等领域的成功应用引起了人们的广泛关注。相关研究也在大气、医疗、生物等领域取得了较好的实验效果。例如在医疗辅助识别领域,肺癌已经成为致人死亡的恶性疾病中比较典型的一种,肺部在病变前期的症状主要表现为结节,如果能早期发现并治疗将会极大提高存活率。肺部的检查也是每年体检的重要部分,肺部检查中主要手段是电子计算机断层扫描(CT),需要经专业医生逐个检查筛选存在肺结节的病例,工作量巨大并且考验着人工筛查的准确本文档来自技高网...

【技术保护点】
1.一种基于深度卷积神经网络的模式识别方法,其特征在于:该方法包括以下步骤:步骤1、构建一个169层的DenseNet模型,该DenseNet模型的主干结构是由4个密集连接的稠密块以及4个过渡层交替拼接而成,稠密块与过渡层之间会有若干个卷积核;每个稠密块内,在每次卷积操作开始前都要将之前所有的结果在通道方向上拼接,实现密集连接的特征图传递,一个具有L层的网络,那么highway稠密连接数目为L*(L+1)/2;模型的最后一层为一个Sigmoid输出的全连接层,输出分类结果;步骤2、对数据集加入噪声,对数据集中每张图片随机添加90、180、270三个角度的旋转,起到扩充数据集的目的;步骤3、对图...

【技术特征摘要】
1.一种基于深度卷积神经网络的模式识别方法,其特征在于:该方法包括以下步骤:步骤1、构建一个169层的DenseNet模型,该DenseNet模型的主干结构是由4个密集连接的稠密块以及4个过渡层交替拼接而成,稠密块与过渡层之间会有若干个卷积核;每个稠密块内,在每次卷积操作开始前都要将之前所有的结果在通道方向上拼接,实现密集连接的特征图传递,一个具有L层的网络,那么highway稠密连接数目为L*(L+1)/2;模型的最后一层为一个Sigmoid输出的全连接层,输出分类结果;步骤2、对数据集加入噪声,对数据集中每张图片随机添加90、180、270三个角度的旋转,起到扩充数据集的目的;步骤3、对图像数据集进行相关预处理;步骤3具体包括以下步骤:步骤3.1、将每张图像进行灰度处理,凸显目标区域位置及轮廓纹理,并将图像压缩到256*256的尺寸;步骤3.2、对图像数据集中每张图像做FiveCrop到224,有50%几率对图像随机进行水平、竖直翻转;步骤3.3、使用ImageNet数据集的平均值与方差对数据集进行标准化处理,即对于图像中第i个点的原像素值xi求标准差其中μ和σ2分别代表ImageNet数据集的均值与方差;步骤3.4、将图像数据集随机生成五份数据集,...

【专利技术属性】
技术研发人员:刘博史超张佳慧
申请(专利权)人:北京工业大学
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1