【技术实现步骤摘要】
飞秒激光加工参数共焦拉曼光谱原位监测方法与装置
本专利技术涉及飞秒激光加工参数共焦拉曼光谱原位监测方法与装置,用于微细结构飞秒激光加工微区形态性能原位在线监测与分析,属于激光精密检测技术、飞秒激光加工制造
技术介绍
飞秒激光加工由于具有材料适应性广、加工精细度高、加工无需掩模等显著优点,而被视为“可能引起新工业革命”的世纪性技术备受关注,并被作为宏—微跨尺度微纳制造的首选手段得到中国、美国等世界各制造大国的优先发展。飞秒激光加工就是利用激光与材料的非线性效应,在超越光学衍射极限的纳米尺度上使材料发生成形与成性,其本质是材料形态与性能参数的同时改变与调控,因而,我们只有同时监测加工过程中材料形态、性能参数的瞬时变化状态,才能真正揭示飞秒激光非线性加工的作用机理及其演化规律。目前飞秒激光加工还存在非线性加工使物镜轴向进给量无法精确对应样品轴向去除量这一重大瓶颈问题,但现有的基于三角光位移传感器轴向监测、背向散射相干层析监测和光学相干层析监测等方法,其分辨能力均为微米或亚微米量级,如加拿大皇后大学和德国哥廷根激光实验室利用干涉成像法(OCT)开展了在线监测技术 ...
【技术保护点】
1.飞秒激光加工参数共焦拉曼光谱原位监测方法,其特征在于:利用飞秒激光加工系统对样品进行微细结构加工,利用激光共焦轴向监测模块对样品表面形貌轮廓、加工中样品表面轴向位置进行实时监控,并对加工后样品表面的几何参数进行检测,利用共焦拉曼光谱探测模块对飞秒激光加工后样品材料的物性变化进行监测分析,进而实现微细结构飞秒激光高精度加工与微区形态性能原位监测分析一体化,提高微细结构飞秒激光加工精度的可控性和样品的加工质量;包括以下步骤:步骤一、将待加工样品(9)置于精密工作台(10)上,由精密工作台(10)带动样品(9)进行二维扫描运动,利用共焦轴向监测模块(1)对样品(9)的表面轮廓 ...
【技术特征摘要】
1.飞秒激光加工参数共焦拉曼光谱原位监测方法,其特征在于:利用飞秒激光加工系统对样品进行微细结构加工,利用激光共焦轴向监测模块对样品表面形貌轮廓、加工中样品表面轴向位置进行实时监控,并对加工后样品表面的几何参数进行检测,利用共焦拉曼光谱探测模块对飞秒激光加工后样品材料的物性变化进行监测分析,进而实现微细结构飞秒激光高精度加工与微区形态性能原位监测分析一体化,提高微细结构飞秒激光加工精度的可控性和样品的加工质量;包括以下步骤:步骤一、将待加工样品(9)置于精密工作台(10)上,由精密工作台(10)带动样品(9)进行二维扫描运动,利用共焦轴向监测模块(1)对样品(9)的表面轮廓进行扫描测量,并将测量结果反馈给计算机(26),用于调整样品(9)姿态,并用于飞秒激光加工系统对加工控制参数的调整;其中,激光共焦轴向监测模块(1)由激光器(2)、扩束器(3)、第一分光镜(12)、共焦探测模块(13)组成;共焦探测模块(13)由探测物镜(14)、和强度探测器(15)组成;轴向监测平行光束(4)依次经第一分光镜(12)透射、经二向色镜A(5)反射、二向色镜B(6)透射后,进入物镜(7)并被聚焦到样品(9)上,经样品(9)反射的反射轴向监测光束(11)经第一分光镜(12)反射后,经探测物镜(14)聚焦到强度探测器(15),得到共焦曲线(16);依据共焦曲线(16)的峰值位置对样品(9)表面位置进行纳米级监测;步骤二、利用飞秒激光器(17)、激光时空整形模块(18)、二维扫描器(20)构成的飞秒激光加工系统对样品(9)进行微细结构加工,加工过程中利用共焦轴向监测模块(1)对样品(9)表面的轴向位置进行监测;依据共焦曲线(16)的峰值点位置对样品(9)表面的轴向位置进行纳米级监测;步骤三、计算机(26)依据测量结果调整样品(9)的轴向位置,实时调整精密工作台(10)的位置,实现加工过程中样品的轴向精确定焦;步骤四、加工完成后,利用激光共焦轴向监测模块(1)对加工完成后的样品结构进行扫描测量,实现加工后样品(9)形态参数的纳米级高精度原位检测;步骤五、轴向监测平行光束(4)经物镜(7)聚焦到样品(9)上,激发出拉曼散射光谱,该光谱经二向色镜B(6)反射后由拉曼光谱探测模块(23)探测,对加工后样品的物性参数进行原位检测分析,其中,拉曼光谱探测模块(23)由光谱耦合透镜(21)和光谱探测器(22)组成。2.根据权利要求1所述的飞秒激光加工参数共焦拉曼光谱原位监测方法,其特征在于:飞秒激光加工系统发出的加工激光光束(1...
【专利技术属性】
技术研发人员:邱丽荣,王允,赵维谦,
申请(专利权)人:北京理工大学,
类型:发明
国别省市:北京,11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。