本发明专利技术涉及飞秒激光加工参数共焦拉曼光谱原位监测方法与装置,属于激光精密检测技术、飞秒激光加工制造技术领域。本发明专利技术将高轴向分辨的激光共焦轴向监测模块与飞秒激光加工系统有机融合,利用共焦系统曲线最大值点对样品轴向位置进行纳米级监测和样品轴向加工尺寸测量,实现了样品轴向位置的实时定焦和加工后微纳结构尺寸的高精度测量,解决了测量过程中的漂移问题和高精度在线检测问题;利用共焦拉曼光谱探测模块对飞秒激光加工后样品材料的分子结构等信息进行监测分析,并通过计算机对上述信息进行融合,实现微细结构飞秒激光高精度加工与微区形态性能原位监测分析一体化,提高微细结构飞秒激光加工精度的可控性和样品的加工质量等。
【技术实现步骤摘要】
飞秒激光加工参数共焦拉曼光谱原位监测方法与装置
本专利技术涉及飞秒激光加工参数共焦拉曼光谱原位监测方法与装置,用于微细结构飞秒激光加工微区形态性能原位在线监测与分析,属于激光精密检测技术、飞秒激光加工制造
技术介绍
飞秒激光加工由于具有材料适应性广、加工精细度高、加工无需掩模等显著优点,而被视为“可能引起新工业革命”的世纪性技术备受关注,并被作为宏—微跨尺度微纳制造的首选手段得到中国、美国等世界各制造大国的优先发展。飞秒激光加工就是利用激光与材料的非线性效应,在超越光学衍射极限的纳米尺度上使材料发生成形与成性,其本质是材料形态与性能参数的同时改变与调控,因而,我们只有同时监测加工过程中材料形态、性能参数的瞬时变化状态,才能真正揭示飞秒激光非线性加工的作用机理及其演化规律。目前飞秒激光加工还存在非线性加工使物镜轴向进给量无法精确对应样品轴向去除量这一重大瓶颈问题,但现有的基于三角光位移传感器轴向监测、背向散射相干层析监测和光学相干层析监测等方法,其分辨能力均为微米或亚微米量级,如加拿大皇后大学和德国哥廷根激光实验室利用干涉成像法(OCT)开展了在线监测技术研究,但其x-y-z方向的监测分辨能力仅达微米量级。可见,飞秒加工装备由于受现有监测技术制约,仍然缺乏高性能的原位监测手段,这就使基于点加工、长耗时的飞秒激光加工设备普遍存在:非线性去除,使轴向去除不准;长耗时漂移,使加工系统不稳;非稳定点加工,使加工尺度不大等共性问题。其根源在于加工系统轴向定焦不准,进而制约了飞秒激光在跨尺度关键元件微纳制造方面的应用。此外,飞秒激光加工过程中,加工材质不同,飞秒脉冲激光与物质的作用机理不同,加工过程中样品产生的形态和性能变化不同,在脉冲激光的作用下,样品的分子结构、元素比例和带电离子等均会发生变化,如何对加工完成后样品的物性参数和形态参数进行精确的检测,不仅是保证加工精度的关键、也是研究飞秒激光加工机理、提升加工工艺水平的重要前提。由此可见,随着飞秒激光加工技术的飞速发展,迫切需要研究飞秒激光加工中形态性能参数的原位监测手段。在形态性能参数探测中,基于拉曼(Raman)散射效应的激光共焦拉曼光谱探测技术,由于可通过探测样品微区拉曼光谱谱峰的强度、位置、位移、比值、半高宽等信息,来测得材料微区组分、应力、温度等参数,而被作为形态性能参数测试的重要的手段在飞秒激光加工的光致应变、晶体晶态、折射率变化、载流子密度、温度状态、成分等离线监测中得到成功应用,但现有飞秒激光加工仍然缺乏飞秒激光加工形态性能参数的一体化原位监测手段。综上所述,现有飞秒激光加工中无法对样品进行精准的定焦和对准,无法对加工中的样品形态性能参数进行高精度的原位监测,其结果限制了飞秒激光加工效果稳定性和跨尺度加工能力,也制约了飞秒激光加工机理研究和加工工艺水平的提高。为此,本专利技术提出在飞秒激光加工系统中创造性地融入激光共焦拉曼光谱探测技术,以期实现飞秒激光加工中形态性能参数的一体化原位监测,为飞秒激光加工形态性能参数一体化原位监测提供新手段,提升飞秒激光加工的精度性能和宏-微跨尺度加工能力等。
技术实现思路
本专利技术的目的是解决飞秒激光加工过程中的漂移问题和加工后样品的在线检测问题,提高微纳结构加工尺寸精度的可控性和样品加工质量,提出了一种飞秒激光加工参数共焦拉曼光谱原位监测一体化方法与装置,以实现高质量的微纳结构飞秒激光加工与原位在线监测。本专利技术的目的是通过下述技术方案实现的。本专利技术的飞秒激光加工参数共焦拉曼光谱原位监测方法,利用飞秒激光加工系统对样品进行微细结构加工,利用激光共焦轴向监测模块对样品表面形貌轮廓、加工中样品表面轴向位置进行实时监控,并对加工后样品表面的几何参数进行检测,利用共焦拉曼光谱探测模块对飞秒激光加工后样品材料的物性变化进行监测分析,进而实现微细结构飞秒激光高精度加工与微区形态性能原位监测分析一体化,提高微细结构飞秒激光加工精度的可控性和样品的加工质量;飞秒激光加工参数共焦拉曼光谱原位监测方法包括以下步骤:步骤一、将待加工样品置于精密工作台上,由精密工作台带动样品进行二维扫描运动,利用共焦轴向监测模块对样品的表面轮廓进行扫描测量,并将其测量结果反馈给计算机,用于调整样品姿态,并用于飞秒激光加工系统对加工控制参数的调整;其中,激光共焦轴向监测模块由激光器、扩束器、第一分光镜、共焦探测模块组成,轴向监测平行光束经二向色镜A反射、二向色镜B透射后,进入物镜并被聚焦到样品上,经样品反射的反射轴向监测光束经第一分光镜反射后,经探测物镜聚焦到强度探测器,得到共焦曲线;依据共焦曲线的峰值点对样品表面位置进行纳米级监测;步骤二、利用飞秒激光器、激光时空整形模块、二维扫描器构成的飞秒激光加工系统对样品进行微纳结构加工,加工过程中利用共焦轴向监测模块对加工过程中样品表面的轴向位置进行监测;依据共焦曲线的峰值点位置对样品的轴向位置进行纳米级监测;步骤三、计算机依据测量结果调整样品的轴向位置,实时调整精密工作台的位置,实现加工过程中样品的精确定焦;步骤四、加工完成后,可利用激光共焦轴向监测模块对加工完成后的样品结构进行扫描测量,实现加工后样品形态参数的纳米级高精度原位检测;步骤五、轴向监测平行光束经物镜聚焦到样品上,激发出拉曼散射光谱,该光谱经二向色镜B反射后由拉曼光谱探测模块探测,对加工后样品的物性参数进行原位检测分析,其中,拉曼光谱探测模块由拉曼耦合镜和光谱探测器组成;本专利技术的飞秒激光加工参数共焦拉曼光谱原位监测方法中,所述飞秒激光加工系统发出的加工激光光束与轴向监测平行光束经物镜同轴耦合到样品表面,实现飞秒激光加工样品几何形态与性能参数的高分辨监测与原位成像。本专利技术所述的飞秒激光加工参数共焦拉曼光谱原位监测方法,加工前可利用显微成像模块对样品进行粗对准和位置观察;白光光源发出的光经照明系统、照明分光镜、二向色镜B、物镜后均匀照射到样品上,经样品返回的光经照明分光镜、第二分光镜反射后经成像物镜成像到CCD上,可判断样品的倾斜和位置。本专利技术的飞秒激光加工参数共焦拉曼光谱原位监测装置,包括飞秒激光器、位于飞秒激光器出射方向的激光时空整形模块和二维扫描器,位于飞秒激光器出射光束垂直方向的二向色镜A、二向色镜B、物镜和精密工作台,位于二向色镜A反射方向的共焦轴向监测模块和位于二向色镜B反射方向的拉曼光谱探测模块,物镜由轴向扫描器驱动;共焦轴向监测模块包括激光器、位于激光器出射方向的扩束器、第一分光镜和第一分光镜反射方向的共焦探测模块,其中轴向监测平行光束和加工激光光束经二向色镜A、物镜同轴入射到样品表面。本专利技术的飞秒激光加工参数共焦拉曼光谱原位监测装置中,所述共焦探测模块可由探测物镜、强度探测器组成。本专利技术的飞秒激光加工参数共焦拉曼光谱原位监测装置中,所述激光时空整形模块可由空间整形器、时间整形器构成,对飞秒激光器发出的激光束进行时域和空域参数的联合调控,提高飞秒激光微纳加工能力。本专利技术所述的飞秒激光加工参数共焦拉曼光谱原位监测装置,还可以利用显微成像模块对样品进行观察和粗对准,其中显微成像模块由白光光源、照明系统、照明分光镜、成像物镜、照明CCD组成;白光光源发出的光经照明系统、照明分光镜、二向色镜B、物镜后均匀照射到样品上,经样品返回的光经本文档来自技高网...
【技术保护点】
1.飞秒激光加工参数共焦拉曼光谱原位监测方法,其特征在于:利用飞秒激光加工系统对样品进行微细结构加工,利用激光共焦轴向监测模块对样品表面形貌轮廓、加工中样品表面轴向位置进行实时监控,并对加工后样品表面的几何参数进行检测,利用共焦拉曼光谱探测模块对飞秒激光加工后样品材料的物性变化进行监测分析,进而实现微细结构飞秒激光高精度加工与微区形态性能原位监测分析一体化,提高微细结构飞秒激光加工精度的可控性和样品的加工质量;包括以下步骤:步骤一、将待加工样品(9)置于精密工作台(10)上,由精密工作台(10)带动样品(9)进行二维扫描运动,利用共焦轴向监测模块(1)对样品(9)的表面轮廓进行扫描测量,并将测量结果反馈给计算机(26),用于调整样品(9)姿态,并用于飞秒激光加工系统对加工控制参数的调整;其中,激光共焦轴向监测模块(1)由激光器(2)、扩束器(3)、第一分光镜(12)、共焦探测模块(13)组成;共焦探测模块(13)由探测物镜(14)、和强度探测器(15)组成;轴向监测平行光束(4)依次经第一分光镜(12)透射、经二向色镜A(5)反射、二向色镜B(6)透射后,进入物镜(7)并被聚焦到样品(9)上,经样品(9)反射的反射轴向监测光束(11)经第一分光镜(12)反射后,经探测物镜(14)聚焦到强度探测器(15),得到共焦曲线(16);依据共焦曲线(16)的峰值位置对样品(9)表面位置进行纳米级监测;步骤二、利用飞秒激光器(17)、激光时空整形模块(18)、二维扫描器(20)构成的飞秒激光加工系统对样品(9)进行微细结构加工,加工过程中利用共焦轴向监测模块(1)对样品(9)表面的轴向位置进行监测;依据共焦曲线(16)的峰值点位置对样品(9)表面的轴向位置进行纳米级监测;步骤三、计算机(26)依据测量结果调整样品(9)的轴向位置,实时调整精密工作台(10)的位置,实现加工过程中样品的轴向精确定焦;步骤四、加工完成后,利用激光共焦轴向监测模块(1)对加工完成后的样品结构进行扫描测量,实现加工后样品(9)形态参数的纳米级高精度原位检测;步骤五、轴向监测平行光束(4)经物镜(7)聚焦到样品(9)上,激发出拉曼散射光谱,该光谱经二向色镜B(6)反射后由拉曼光谱探测模块(23)探测,对加工后样品的物性参数进行原位检测分析,其中,拉曼光谱探测模块(23)由光谱耦合透镜(21)和光谱探测器(22)组成。...
【技术特征摘要】
1.飞秒激光加工参数共焦拉曼光谱原位监测方法,其特征在于:利用飞秒激光加工系统对样品进行微细结构加工,利用激光共焦轴向监测模块对样品表面形貌轮廓、加工中样品表面轴向位置进行实时监控,并对加工后样品表面的几何参数进行检测,利用共焦拉曼光谱探测模块对飞秒激光加工后样品材料的物性变化进行监测分析,进而实现微细结构飞秒激光高精度加工与微区形态性能原位监测分析一体化,提高微细结构飞秒激光加工精度的可控性和样品的加工质量;包括以下步骤:步骤一、将待加工样品(9)置于精密工作台(10)上,由精密工作台(10)带动样品(9)进行二维扫描运动,利用共焦轴向监测模块(1)对样品(9)的表面轮廓进行扫描测量,并将测量结果反馈给计算机(26),用于调整样品(9)姿态,并用于飞秒激光加工系统对加工控制参数的调整;其中,激光共焦轴向监测模块(1)由激光器(2)、扩束器(3)、第一分光镜(12)、共焦探测模块(13)组成;共焦探测模块(13)由探测物镜(14)、和强度探测器(15)组成;轴向监测平行光束(4)依次经第一分光镜(12)透射、经二向色镜A(5)反射、二向色镜B(6)透射后,进入物镜(7)并被聚焦到样品(9)上,经样品(9)反射的反射轴向监测光束(11)经第一分光镜(12)反射后,经探测物镜(14)聚焦到强度探测器(15),得到共焦曲线(16);依据共焦曲线(16)的峰值位置对样品(9)表面位置进行纳米级监测;步骤二、利用飞秒激光器(17)、激光时空整形模块(18)、二维扫描器(20)构成的飞秒激光加工系统对样品(9)进行微细结构加工,加工过程中利用共焦轴向监测模块(1)对样品(9)表面的轴向位置进行监测;依据共焦曲线(16)的峰值点位置对样品(9)表面的轴向位置进行纳米级监测;步骤三、计算机(26)依据测量结果调整样品(9)的轴向位置,实时调整精密工作台(10)的位置,实现加工过程中样品的轴向精确定焦;步骤四、加工完成后,利用激光共焦轴向监测模块(1)对加工完成后的样品结构进行扫描测量,实现加工后样品(9)形态参数的纳米级高精度原位检测;步骤五、轴向监测平行光束(4)经物镜(7)聚焦到样品(9)上,激发出拉曼散射光谱,该光谱经二向色镜B(6)反射后由拉曼光谱探测模块(23)探测,对加工后样品的物性参数进行原位检测分析,其中,拉曼光谱探测模块(23)由光谱耦合透镜(21)和光谱探测器(22)组成。2.根据权利要求1所述的飞秒激光加工参数共焦拉曼光谱原位监测方法,其特征在于:飞秒激光加工系统发出的加工激光光束(1...
【专利技术属性】
技术研发人员:邱丽荣,王允,赵维谦,
申请(专利权)人:北京理工大学,
类型:发明
国别省市:北京,11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。