高精度地图制作中地下车库停车位提取方法及系统技术方案

技术编号:20162244 阅读:51 留言:0更新日期:2019-01-19 00:15
本发明专利技术涉及一种高精度地图制作中地下车库停车位提取方法及系统,其包括如下步骤:S1、将包含停车位的3D激光点云投影为2D鸟瞰模式图像;S2、计算图像对比度估计指标,根据对比度估计使用不同的图像预处理方法得到二值图像;S3、使用概率霍夫变换检测二值图像的直线段,根据检测直线段计算得到停车线旋转角度估计;S4、根据旋转角并以图像中心点为圆心旋转图像;S5、统计旋转图像每行、列包含停车线像素点个数,得到图像在水平与垂直方法的积分投影;S6、根据图像在水平与垂直方向的积分投影搜索得到停车位四个内角点坐标;S7、停车位内角点坐标逆变换到点云数据,从而提取出停车位。

【技术实现步骤摘要】
高精度地图制作中地下车库停车位提取方法及系统
本专利技术涉及高精度地图制作
,特别涉及一种高精度地图制作中地下车库停车位提取方法及系统。
技术介绍
高精地图是无人驾驶核心技术之一,精准的地图对无人车定位、导航与控制,以及安全至关重要,如何生成高精度地图也是无人驾驶的领域亟待解决的问题。地下车库停车位表示建筑在地下并可供机动车长期或长期或临时停放的区域,由停车线按一定大小划分了每辆车了每辆车的停车区域。地下停车场与不同等级的城市道路相配合,满足不同规模的停车需要,对城市中心区的交通起到非常重要的调节和控制作用。高精度的地下车库停车位数据,作为高精度地图的重要一部分尤为重要。现有的停车位提取方法,往往是基于原始图像数据的提取方法,采用边缘检测方法进行边缘检测得到停车线的边缘点集,然后对边缘点集进行霍夫变换与直线提取,通过对停车线的提取得到最终的停车位。但是该方法对光照敏感,在不同光照条件下,停车位在图像中的梯度差异较大,容易导致错提取和漏提取。与此同时,由于实际应用中边缘检测方法得到的边缘点集中存在噪声不全是停车线的边缘,单一使用霍夫变换与直线提取容易造成误差,从而导致提取精度不高本文档来自技高网...

【技术保护点】
1.一种高精度地图制作中地下车库停车位提取方法,其特征在于,其包括如下步骤:S1、将包含停车位的3D激光点云投影为2D鸟瞰模式图像;S2、计算图像对比度估计指标,根据对比度估计使用不同的图像预处理方法得到二值图像;S3、使用概率霍夫变换检测二值图像的直线段,根据检测直线段计算得到停车线旋转角度估计;S4、根据旋转角并以图像中心点为圆心旋转图像;S5、统计旋转图像每行、列包含停车线像素点个数,得到图像在水平与垂直方法的积分投影;S6、根据图像在水平与垂直方向的积分投影搜索得到停车位四个内角点坐标;S7、停车位内角点坐标逆变换到点云数据,从而提取出停车位。

【技术特征摘要】
1.一种高精度地图制作中地下车库停车位提取方法,其特征在于,其包括如下步骤:S1、将包含停车位的3D激光点云投影为2D鸟瞰模式图像;S2、计算图像对比度估计指标,根据对比度估计使用不同的图像预处理方法得到二值图像;S3、使用概率霍夫变换检测二值图像的直线段,根据检测直线段计算得到停车线旋转角度估计;S4、根据旋转角并以图像中心点为圆心旋转图像;S5、统计旋转图像每行、列包含停车线像素点个数,得到图像在水平与垂直方法的积分投影;S6、根据图像在水平与垂直方向的积分投影搜索得到停车位四个内角点坐标;S7、停车位内角点坐标逆变换到点云数据,从而提取出停车位。2.如权利要求1所述的高精度地图制作中地下车库停车位提取方法,其特征在于,所述步骤S2包括:使用图像标准差估计图像I的对比度e=std(I);当e小于给定阈值te时,对图像I依次进行中值滤波、高斯自适应二值化、形态学闭处理得到二值化图像Ib,当e大于等于给定阈值te时,对图像I依次进行形态学闭处理、局部拉普拉斯滤波、高斯自适应二值化得到二值化图像Ib:其中,中值滤波操作medianBlur()表示,高斯自适应二值化gB()表示,形态学闭处理close()表示,局部拉普拉斯滤波localLaplacian()表示。3.如权利要求2所述的高精度地图制作中地下车库停车位提取方法,其特征在于,由概率霍夫变换检测出图像Ib具有停车线方向性的直线集合,遍历直线集合保留直线线段大于t且夹角为θ容忍度为tθ最多的直线集合lk,计算lk线段长度dk和倾斜角ak,计算权重可以计算出停车位倾斜角θ=wkak即为停车线旋转角。4.如权利要求3所述的高精度地图制作中地下车库停车位提取方法,其特征在于,所述步骤S4包括:以停车线旋转角θ作为旋转角,并以图像...

【专利技术属性】
技术研发人员:李叶伟
申请(专利权)人:武汉中海庭数据技术有限公司
类型:发明
国别省市:湖北,42

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1