后置分光瞳激光差动共焦透镜中心厚度测量方法与装置制造方法及图纸

技术编号:20093417 阅读:46 留言:0更新日期:2019-01-15 12:41
本发明专利技术涉及后置分光瞳激光差动共焦透镜中心厚度测量方法与装置,属于光学精密测量技术领域。本方法利用差动共焦响应曲线的绝对零点分别对被测透镜的前、后表面顶点进行精确定焦,通过光线追迹及其补偿模型计算出被测透镜的中心厚度。本发明专利技术首次将后置分光瞳激光差动共焦技术用于透镜中心厚度的高精度检测,仅用一路探测器即可实现差动共焦定焦及透镜中心厚度测量,避免了更换被测镜可能导致的定焦精度下降,进而提高了测量精度;将激光差动共焦技术与光线追迹技术有机融合,建立光线追迹及其补偿模型以消除各定焦表面参数之间的影响;并通过线性拟合绝对零点附近的数据实现快速触发定焦,使测量速度、精度及抗散射能力大大提升。

Central Thickness Measurement Method and Device for Post-Splitting Pupil Laser Differential Confocal Lens

The invention relates to a method and device for measuring the central thickness of a post-splitting pupil laser differential confocal lens, belonging to the technical field of optical precision measurement. In this method, the absolute zeros of the differential confocal response curve are used to precisely focus the front and rear surface vertices of the measured lens, and the central thickness of the measured lens is calculated by ray tracing and compensation model. For the first time, the post-splitting pupil laser differential confocal technology is applied to the high-precision detection of the central thickness of lenses. The differential confocal focusing and the central thickness measurement of lenses can be realized by only one detector, thus avoiding the possible decrease of the focusing accuracy caused by replacing the measured lens, thereby improving the measurement accuracy. The laser differential confocal technology and ray tracing technology are organically integrated to establish light rays. Tracking and compensation model are used to eliminate the influence between the parameters of the fixed focal surface, and fast triggering focusing is realized by fitting the data near the absolute zero point linearly, which greatly improves the measuring speed, accuracy and anti-scattering ability.

【技术实现步骤摘要】
后置分光瞳激光差动共焦透镜中心厚度测量方法与装置
本专利技术涉及后置分光瞳激光差动共焦透镜中心厚度测量方法与装置,可用于透镜中心厚度的非接触式高精度测量,属于光学精密测量

技术介绍
在光学领域中,透镜中心厚度的测量具有重要意义。透镜中心厚度是光学系统中的一个重要参数,其加工质量的好坏会对光学系统的成像质量产生较大影响。特别是对于光刻机物镜、航天相机等高性能光学系统中的透镜,需要根据镜头中透镜的曲率半径、折射率和中心厚度对透镜的轴向间隙、径向偏移和光轴偏角进行精密的调整。以光刻机物镜为例,每个单透镜中心厚度的偏差都会造成光刻物镜的像差,影响物镜的成像质量。目前应用较为广泛的“数码镜头”和“CCD扫描镜头”,其透镜中心厚度的精度一般为几微米,也需要有高精度的仪器来测量和检验,因此透镜中心厚度是光学零件必检和严格控制的项目之一。目前,透镜中心厚度测量技术可分为接触式测量和非接触式测量两种。接触式测量,一般是用手持千分表或千分尺测量。测量时,透镜中心点位置的准确性将直接影响测量精度,因此检验员在测量时要来回移动被测透镜,寻找最高点(凸镜)或最低点(凹镜),因而测量速度慢,误差大,而且目前使用的高透过光学材料,材质较软,测量时测头在透镜表面移动,容易划伤透镜表面。针对接触式测量存在的问题,国内学者也进行了相关研究。在1999年《实用测试技术》中发表的《光栅数显式透镜厚度测量仪》一文中,作者设计了一种利用光栅传感器作为精密长度测量器件构成的透镜中心厚度测量仪,根据不同类型的光学透镜及测量精度要求,可采用不同形式的测头及测量座组合进行测量,将测量精度提高到1μm。中国专利“测量光学透镜中心厚度的装置”(专利号:200620125116.9),采用了在测量立柱上部放置被测透镜冶具的方法,避免了寻找透镜表面顶点时测头在透镜表面来回移动对透镜所造成的损伤。非接触式测量常用图像测量法、共面电容法、白光共焦法和干涉法。2005年《传感器技术》上发表的《基于图像测量技术的装配间隙在线测量研究》一文中,介绍了一种基于图像测量技术的在线测量方案,将间隙通过光学系统在CCD摄像机中成的像送交图像测量软件处理和分析,由测量软件给出结果。这种方法也可以应用于透镜中心厚度的测量,但由于受摄像机成像系统、CCD分辨力、图像清晰程度和标定系数精确度等的影响,测量误差在15μm以内。在1994年《仪器仪表学报》上发表的《光学透镜中心厚度自动检测仪》一文中,利用共面电容法测量透镜中心厚度。其采用的是相对测量的方法,即首先根据要求把电容测头与基准面调整到某一固定距离;然后将被测透镜放在基准面上,被测透镜与测头之间存在空气间隙,不同的透镜厚度对应不同的空气间隙和不同的测头电容;最后通过电路测量出相应于电容而变化的电压信号,就可以找出被测透镜厚度的相对变化,此方法的分选精度小于5μm。但这种方法测量前需要已知被测透镜材料的信号电压与空气间隙的关系曲线,在工程实际中,必须对共面电容测头进行精确测试,以取得可靠数据作为检测依据。2005年在《GLASSSCIENCEANDTECHNOLOGY》上发表的《Noncontactmeasuremeofcentrallensthickness》一文中,采用白光共焦法测量透镜中心厚度。这种方法首先利用白光通过透镜后轴向色差形成的探针对被测透镜表面顶点进行定位,然后通过被测透镜上下表面顶点反射的光谱信息计算透镜的厚度。此方法的特点在于能够实现实时测量,但白光是非相干光,定焦灵敏度和分辨力较低,工作距离有限(30μm-25mm)。特别是很难准确已知被测透镜在不同波长处的折射率,一般都是通过测定特定波长处的折射率后插值所得,此项参数对测量结果的影响较大,所以这种方法在实际应用中很难实现高精度测量。中国专利“光学元件厚度的光学测量仪器”(专利号:87200715),利用双干涉系统对透镜中心厚度进行非接触测量。该仪器由两个迈克尔逊干涉系统组成,根据白光干涉条纹对被测透镜的两个表面进行定位,并将被测透镜与标准块比较以求得被测透镜的中心厚度。可对胶合透镜、可见光不透明的光学元件、未知材料的光学元件等实现非接触测量。但这种仪器的结构比较复杂,测量过程中需要更换元件,其测量精度不仅取决于多个表面的定位精度,还依赖于标准块已知厚度的精度,同时为了提高测量精度,需要选取与被测透镜厚度相近的标准块。中国专利“一种微小光学间隔的测量装置”(专利号:93238743.8),采用偏振光干涉法测量样品厚度。入射白光在样品上下表面反射形成的两波阵面经起偏镜、双折射棱镜、检偏镜后在光电检测器阵列上形成干涉条纹,由干涉条纹间距即可得样品厚度。同时在检偏镜与光电检测器阵列之间加入一柱透镜使干涉图样沿条纹间距方向得到放大,降低了对光电检测器阵列的要求,测量精度为1-5%,但这种方法目前只用于测量玻璃平板的厚度。本专利技术人曾于2010年申请中国专利“差动共焦透镜中心测量方法与装置”(专利号:201010000555.8),通过差动共焦原理精确定焦透镜的前后表面顶点位置,实现了透镜中心厚度的非接触高精度测量。但是必须使用两路探测器,并且这两路探测器的位置需保证离焦量相等,系统结构、装调过程比较复杂,装调不准所引入的误差可能较大;更换被测镜后,两探测器的离焦量可能需要重新调整。本专利技术提出了一种后置分光瞳激光差动共焦透镜中心厚度测量方法与装置,使用后置光瞳遮挡一半的测量光束,收集另一半测量光束并利用分光瞳差动共焦探测系统获得差动共焦响应曲线,通过线性拟合差动共焦响应曲线零点附近的数据来实现快速精确定焦,并根据光线追迹及其补偿模型计算透镜中心厚度,完成透镜厚度的高精度测量。本专利技术仅用一路探测器实现了激光差动共焦定焦及测量,既避免了离焦量调整不准确所引入的测量误差,又避免了测量不同被测镜可能导致的定焦灵敏度下降,同时系统结构和装调大大简化。
技术实现思路
本专利技术的目的是为了解决球面透镜中心厚度高精度测试不理想的问题,提供后置分光瞳激光差动共焦透镜中心厚度测量方法与装置,该方法通过后置光瞳收集测量光束,并使用分光瞳差动共焦探测系统进行探测,进而实现精确定焦和透镜厚度的高精度测量。本专利技术的目的是通过下述技术方案实现的。本专利技术的后置分光瞳差动共焦透镜中心厚度测量方法,包括以下步骤:步骤一、光源发出的光经分束镜、准直透镜和会聚透镜后形成测量光束照射在被测透镜上;步骤二、调整被测透镜,使被测透镜与测量光束共光轴,由被测透镜反射回来的光通过会聚透镜和准直透镜后被分束镜反射,被后置光瞳遮挡一半,透过的一半光束则聚焦为测量光斑,进入分光瞳差动共焦探测系统;步骤三、沿光轴方向移动被测透镜,使测量光束的焦点与被测透镜的前表面顶点位置重合;在该位置扫描被测透镜,由分光瞳差动共焦探测系统得到差动共焦响应曲线,通过差动共焦响应曲线的绝对零点来确定测量光束精确定焦在被测透镜的前表面顶点的位置,并将此时前表面顶点位置记为Z1;步骤四、继续沿光轴方向移动被测透镜,使测量光束的焦点与被测透镜的后表面顶点位置重合;在后表面顶点位置扫描被测透镜,由分光瞳差动共焦探测系统得到差动共焦响应曲线,通过差动共焦响应曲线的绝对零点来确定测量光束精确定焦在被测透镜的后表面顶点位置,并将此时后表面顶点位置记本文档来自技高网
...

【技术保护点】
1.后置分光瞳激光差动共焦透镜中心厚度测量方法,其特征在于:具体步骤如下:步骤一、点光源(1)发出的光经分束镜(2)、准直透镜(4)和会聚透镜(5)后形成测量光束照射在被测透镜(6)上;步骤二、调整被测透镜(6),使被测透镜(6)与测量光束共光轴,由被测透镜(6)反射回来的光通过会聚透镜(5)和准直透镜(4)后被分束镜(2)反射,被后置光瞳遮挡一半,透过的一半光束则聚焦为测量光斑,进入分光瞳差动共焦探测系统(11);步骤三、沿光轴方向移动被测透镜(2),使测量光束的焦点与被测透镜(2)的前表面顶点位置重合;在该位置扫描被测透镜(6),由分光瞳差动共焦探测系统(11)得到差动共焦响应曲线,通过差动共焦响应曲线(17)的绝对零点来确定测量光束精确定焦在被测透镜(6)的前表面顶点的位置,并将此时前表面顶点位置记为Z1;步骤四、继续沿光轴方向移动被测透镜(6),使测量光束的焦点与被测透镜(6)的后表面顶点位置重合;在后表面顶点位置扫描被测透镜(6),由分光瞳差动共焦探测系统(11)得到差动共焦响应曲线(17),通过差动共焦响应曲线(17)的绝对零点来确定测量光束精确定焦在被测透镜(6)的后表面顶点位置,并将此时后表面顶点位置记为Z2;步骤五、根据建立的光线追迹及其补偿模型,得到透镜中心厚度d的计算公式如下:...

【技术特征摘要】
1.后置分光瞳激光差动共焦透镜中心厚度测量方法,其特征在于:具体步骤如下:步骤一、点光源(1)发出的光经分束镜(2)、准直透镜(4)和会聚透镜(5)后形成测量光束照射在被测透镜(6)上;步骤二、调整被测透镜(6),使被测透镜(6)与测量光束共光轴,由被测透镜(6)反射回来的光通过会聚透镜(5)和准直透镜(4)后被分束镜(2)反射,被后置光瞳遮挡一半,透过的一半光束则聚焦为测量光斑,进入分光瞳差动共焦探测系统(11);步骤三、沿光轴方向移动被测透镜(2),使测量光束的焦点与被测透镜(2)的前表面顶点位置重合;在该位置扫描被测透镜(6),由分光瞳差动共焦探测系统(11)得到差动共焦响应曲线,通过差动共焦响应曲线(17)的绝对零点来确定测量光束精确定焦在被测透镜(6)的前表面顶点的位置,并将此时前表面顶点位置记为Z1;步骤四、继续沿光轴方向移动被测透镜(6),使测量光束的焦点与被测透镜(6)的后表面顶点位置重合;在后表面顶点位置扫描被测透镜(6),由分光瞳差动共焦探测系统(11)得到差动共焦响应曲线(17),通过差动共焦响应曲线(17)的绝对零点来确定测量光束精确定焦在被测透镜(6)的后表面顶点位置,并将此时后表面顶点位置记为Z2;步骤五、根据建立的光线追迹及其补偿模型,得到透镜中心厚度d的计算公式如下:代入已知参数:测量光束的数值孔径角α0、被测透镜的前表面曲率半径r1、空气折射率n0、被测透镜折射率n和两次定焦位置之间的距离l=|Z2-Z1|,则可计算被测透镜的中心厚度d。2.根据权利要求1所述的后置分光瞳激光差动共焦透镜中心厚度测量方法,其特征在于:将激光差动共焦技术与光线追迹技术有机融合,建立光线追迹及其补偿模型,进而消除各层析定焦表面参数间的相互影响,进而得出透镜中心厚度的计算公式。如图2和公式(2)所示,rN为第N个表面SN的曲率半径,nN为第N个表面SN与第N+1个表面SN+1之间的材料折射率,dN-1为第N-1个表面SN-1与第N个表面SN之间的轴向间隙,lN′为SN顶点到SN出射线与光轴交点的距离,uN′为SN出射光线与光轴的夹角。根据以上公式可推导得出透镜中心厚度计算的公式(1),进一步实现透镜中心厚度精确测量。3.根据权利要求1所述的后置分光瞳激光差动共焦透镜中心厚度测量方法,其特征在于:所述后...

【专利技术属性】
技术研发人员:赵维谦杨帅邱丽荣王允
申请(专利权)人:北京理工大学
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1