基于CAN现场总线和LLC谐振变换器的脉冲MIG焊电源系统技术方案

技术编号:19914704 阅读:20 留言:0更新日期:2018-12-28 22:41
本实用新型专利技术公开了一种基于CAN现场总线和LLC谐振变换器的脉冲MIG焊电源系统,包括三相交流输入电网、焊接电源、电弧负载和人机界面模块;焊接电源由脉冲峰值模块和脉冲基值模块组成,脉冲峰值模块由若干个子系统并联组成,脉冲基值模块由一个子系统组成,子系统包括主电路、驱动模块、故障保护模块、电压电流检测模块和控制模块,控制模块包括DSP数字化控制模块,分别与故障保护模块、驱动模块和电压电流检测模块连接。本实用新型专利技术实现脉冲MIG焊脉冲峰值和基值输出时,LLC谐振变换器工作于谐振频率最佳工作点,原边电流接近正弦电流,电磁干扰小,使得系统稳定而可靠,功率器件得到最优利用,减少开关损耗,提高电源效率。

【技术实现步骤摘要】
基于CAN现场总线和LLC谐振变换器的脉冲MIG焊电源系统
本技术涉及焊接电源
,具体涉及一种基于CAN现场总线和LLC谐振变换器的脉冲MIG焊电源系统。
技术介绍
脉冲MIG焊技术较多用于高性能的自动焊场合,它集高效优质和自动化于一体,它的突出优点表现为:焊接电流调节范围比较宽,包括短路过渡到喷射过渡的所有电流区域,既能焊接厚板,也能焊接薄板,焊接薄板时与短路过渡比较熔透性好、变形小、焊接效率高;采用脉冲电流后,可采用较小的平均电流进行焊接,平均电流比GMAW焊时的连续电流喷射过渡的临界电流低,因此母材的热输入量低,焊接变形小,适用于全位置焊接;熔滴过渡过程可控性比较强;焊接时无飞溅(或基本无飞溅)、弧长短,轴向性好、熔敷效率高、焊缝成形好,焊缝表面宽而平坦、焊接烟尘小。因此脉冲MIG焊在生产上得到了重视,特别是机器人焊接时对焊接质量和精度要求比较高的场合更是如此。在今后一段时间内,脉冲MIG焊将在主要工业国家的焊接中进一步代替手工焊和CO2焊,应用范围将越来越广泛。近年来随着市场竞争的日趋激烈,提高焊接生产率、保证产品质量、实现焊接生产的自动化、智能化越来越得到焊接生产企业的重视,特别是机器人焊接时对焊接质量和精度要求比较高的场合更是如此。加上现代人工智能技术、数字化信息处理技术、计算机视觉技术等高新技术的融入,也促使脉冲MIG焊技术正朝着焊接高速高效化、焊接控制数字化、控制系统智能化方向发展。目前脉冲MIG焊电源主电路可分为硬开关和移相全桥软开关形式。硬开关电路功率器件开通和关断的过程中电压和电流会有一部分相交重叠在一起,造成开关损耗,导致效率低,带来电磁污染,因此每个功率器件都需要外接缓冲吸收电路,导致电路繁杂。移相全桥软开关电路在开关管开通阶段使用移相控制,让电流滞后电压,可以实现功率开关管零电压开通,但存在轻载时滞后桥臂难以实现软开关;且副边整流二极管不能实现零电流关断,造成开关损耗,存在反向恢复问题并导致振铃电压尖峰难以处理,恶化整机可靠性,因此副边整流二极管需要外接缓冲吸收电路;当重载时,原边电流过大导致的副边占空比丢失更加严重,使得电源能量没有得到充分的利用,并使得电压振铃进一步加剧。这使得电源效率没有得到充分利用,大大增加电能的损耗,愈发跟不上当前市场上要求越来越高的节能化需求。与硬开关和移相全桥软开关技术相比较,LLC谐振变换器不但具有原边MOSFET功率开关管零电压开通特性,同时能实现副边整流二极管的零电流关断和低耐压要求,副边整流二极管零电流关断克服反向恢复损耗,产生的电磁干扰小,容易解决传导和辐射问题,而且其掉电维持时间特性比较好,损耗低,转换效率更高。当LLC谐振变换器工作在谐振频率时,其增益和负载无关,在这个工作条件下,原边的电流接近正弦电流、原边MOSFET功率开关管可以实现零电压开通、副边整流二极管可以实现零电流关断,原副边的功率器件都得到最优的利用,效率最高,电磁干扰也最小,谐振频率为LLC谐振电路的最佳工作点。LLC谐振模块采用的功率开关管为MOSFET场效应管,因受到半导体功率器件容量的限制和高频变压器磁性材料的制约,单个子系统的输出功率不大,需要通过子系统并联实现大功率输出。如果让并联的每个子系统都工作于谐振频率最佳工作点,每个子系统满载输出,效率最高,将能充分发挥LLC谐振变换器的高效率和小电磁干扰的优势。目前市面上缺乏一种能够实现脉冲MIG焊的同时实现焊接电源原边MOSFET功率开关管零电压开通和副边整流二极管零电流关断,从而减少开关损耗,降低电磁污染,提高电源效率的脉冲MIG焊电源。由此可见,现有的脉冲MIG焊电源系统,主要有以下几个方面的缺点:(1)电磁污染严重。(2)电源效率低。(3)输出功率小。
技术实现思路
为了克服现有技术存在的缺点与不足,本技术提供一种基于CAN现场总线和LLC谐振变换器的脉冲MIG焊电源系统。本技术的目的采用如下技术方案:一种基于CAN现场总线和LLC谐振变换器的脉冲MIG焊电源系统,包括三相交流输入电网、焊接电源、电弧负载和人机界面模块;所述焊接电源由脉冲峰值模块和脉冲基值模块组成,脉冲峰值模块由若干个子系统并联组成,脉冲基值模块由一个子系统组成,所述子系统包括主电路、驱动模块、故障保护模块、电压电流检测模块和控制模块,所述控制模块包括DSP数字化控制模块,所述DSP数字化控制模块分别与故障保护模块、驱动模块和电压电流检测模块相连接,所述故障保护模块及电压电流检测模块分别与主电路的输入端及输出端连接;所述主电路包括依次连接的输入整流滤波模块、LLC谐振模块、功率变压器模块和输出整流滤波模块,所述输入整流滤波模块与三相交流输入电网连接,所述输出整流滤波模块与电弧负载连接;脉冲峰值模块中若干个子系统与脉冲基值模块中子系统的控制模块通过CAN现场总线相连,脉冲基值模块与人机界面模块通过CAN现场总线连接。脉冲基值模块根据脉冲时序通过CAN现场总线实现对脉冲基值模块和脉冲峰值模块满载输出的开关切换。脉冲峰值输出时,脉冲峰值模块中若干个子系统同时工作,输出脉冲峰值电压和脉冲峰值电流,此阶段脉冲基值模块无输出;脉冲基值输出时只有脉冲基值模块中一个子系统工作,输出脉冲基值电压和脉冲基值电流,此阶段脉冲峰值模块无输出,从而保证所有子系统LLC谐振模块工作于谐振频率最佳工作点。工作于谐振频率最佳工作点时,LLC谐振模块的增益和负载无关,原边电流接近正弦电流、原边MOSFET功率开关管可以实现零电压开通、副边整流二极管可以实现零电流关断,原副边的功率器件都得到最优的利用,效率最高,电磁干扰也最小。所述DSP数字化控制模块采用TMS320F28335的数字信号处理器,所述数字信号处理器内嵌事件管理器,所述事件管理器具有脉冲频率调制单元。所述LLC谐振模块由逆变网络和LLC谐振网络构成,所述逆变网络由四个功率开关管和第一电容构成;所述LLC谐振网络包括谐振电感、励磁电感和谐振电容,所述谐振电感、励磁电感、谐振电容和等效负载一起构成谐振腔,所述等效负载是由功率变压器模块、输出整流滤波模块和电弧负载构成。所述故障保护模块包括相互连接的过压检测电路、欠压检测电路、过流检测电路、过温检测电路和门电路。所述输出整流滤波模块包括第一整流二极管、第二整流二极管和第二电容。所述LLC谐振模块工作于谐振频率最佳工作点,工作在四个不同的工作模态上:所述LLC谐振模块在第一工作模态时,所述第一及第四功率开关管开通,所述三相交流输入电网为谐振腔提供能量,谐振电流流经第一及第四功率开关管,变压器原边提供给负载的电流等于谐振电流减去励磁电流,励磁电流先负后正,所述变压器副边电压上正下负,所述第一整流二极管开通,第二整流二极管关断,所述励磁电感被输出电压箝位,不参与谐振过程,所述励磁电流线性上升;所述LLC谐振模块在第二工作模态时,所述第一及第四功率开关管关断,所述第三功率开关管体内寄生输出电容电荷被谐振腔抽为零,所述第四功率开关管体内寄生输出电容电荷被谐振腔充满至电源电压,并且所述第二及第三功率开关管寄生反并联二极管续流,所述第二及第三功率开关管之间DS极之间的电压为零,为实现第二及第三功率开关管零电压开通创造了条件,所述变压器原边电压极性本文档来自技高网
...

【技术保护点】
1.一种基于CAN现场总线和LLC谐振变换器的脉冲MIG焊电源系统,其特征在于,包括三相交流输入电网、焊接电源、电弧负载和人机界面模块;所述焊接电源由脉冲峰值模块和脉冲基值模块组成,脉冲峰值模块由若干个子系统并联组成,脉冲基值模块由一个子系统组成,所述子系统包括主电路、驱动模块、故障保护模块、电压电流检测模块和控制模块,所述控制模块包括DSP数字化控制模块,所述DSP数字化控制模块分别与故障保护模块、驱动模块和电压电流检测模块相连接,所述故障保护模块及电压电流检测模块分别与主电路的输入端及输出端连接;所述主电路包括依次连接的输入整流滤波模块、LLC谐振模块、功率变压器模块和输出整流滤波模块,所述输入整流滤波模块与三相交流输入电网连接,所述输出整流滤波模块与电弧负载连接;所述脉冲峰值模块中若干个子系统与所述脉冲基值模块中子系统的控制模块通过CAN现场总线相连,所述脉冲基值模块与所述人机界面模块通过CAN现场总线连接;所述脉冲基值模块根据脉冲时序通过CAN现场总线实现对脉冲基值模块和脉冲峰值模块满载输出的开关切换,脉冲峰值输出时,脉冲峰值模块中若干个子系统同时工作,输出脉冲峰值电压和脉冲峰值电流,此阶段脉冲基值模块无输出;所述脉冲基值输出时只有脉冲基值模块中一个子系统工作,输出脉冲基值电压和脉冲基值电流,此阶段脉冲峰值模块无输出,从而保证所有子系统LLC谐振模块工作于谐振频率最佳工作点。...

【技术特征摘要】
1.一种基于CAN现场总线和LLC谐振变换器的脉冲MIG焊电源系统,其特征在于,包括三相交流输入电网、焊接电源、电弧负载和人机界面模块;所述焊接电源由脉冲峰值模块和脉冲基值模块组成,脉冲峰值模块由若干个子系统并联组成,脉冲基值模块由一个子系统组成,所述子系统包括主电路、驱动模块、故障保护模块、电压电流检测模块和控制模块,所述控制模块包括DSP数字化控制模块,所述DSP数字化控制模块分别与故障保护模块、驱动模块和电压电流检测模块相连接,所述故障保护模块及电压电流检测模块分别与主电路的输入端及输出端连接;所述主电路包括依次连接的输入整流滤波模块、LLC谐振模块、功率变压器模块和输出整流滤波模块,所述输入整流滤波模块与三相交流输入电网连接,所述输出整流滤波模块与电弧负载连接;所述脉冲峰值模块中若干个子系统与所述脉冲基值模块中子系统的控制模块通过CAN现场总线相连,所述脉冲基值模块与所述人机界面模块通过CAN现场总线连接;所述脉冲基值模块根据脉冲时序通过CAN现场总线实现对脉冲基值模块和脉冲峰值模块满载输出的开关切换,脉冲峰值输出时,脉冲峰值模块中若干个子系统同时工作,输出脉冲峰值电压和脉冲峰值电流,此阶段脉冲基值模块无输出;所述脉冲基值输出时只有脉冲基值模块中一个子系统工作,输出脉冲基值电压和脉冲基值电流,此阶段脉冲峰值模块无输出,从而保证所有子系统LLC谐振模块工作于谐振频率最佳工作点。2.根据权利要求1所述的基于CAN现场总线和LLC谐振变换器的脉冲MIG焊电源系统,其特征在于,所述DSP数字化控制模块采用TMS320F28335的数字信号处理器,该数字信号处理器内嵌事件管理器,其中,事件管理器具有脉冲频率调制单元。3.根据权利要求1所述的基于CAN现场总线和LLC谐振变换器的脉冲MIG焊电源系统,其特征在于,所述LLC谐振模块由逆变网络和LLC谐振网络构成,所述逆变网络由四个功率开关管和第一电容构成;所述四个功率开关管均为MOSFET管,分别为第一功率开关管、第二功率开关管、第三功率开关管及第四功率开关管;所述LLC谐振网络包括谐振电感、励磁电感和谐振电容,所述谐振电感、励磁电感、谐振电容和等效负载一起构成谐振腔,所述等效负载是由功率变压器模块、输出整流滤波模块和电弧负载构成。4.根据权利要求1所述的基于CAN现场总线和LLC谐振变换器的脉冲MIG焊电源系统,其特征在于,所述故障保护模块包括相互连接的过压检测电路、欠压检测电路、过流检测电路、过温检测电路和门电路。5.根据权利要求3所述的基于CAN现场总线和LLC谐振变换器的脉冲MIG焊电源系统,其特征在于,所述输出整流滤波模块包括第一整流二极管、第二整流二极管和第二电容。6.根据权利要求5所述的基于CAN现场总线和LLC谐振变换器的脉冲MIG焊电...

【专利技术属性】
技术研发人员:吴开源尹彤谢沛民丁念刘朝李星林
申请(专利权)人:华南理工大学
类型:新型
国别省市:广东,44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1