【技术实现步骤摘要】
一种基于变参收敛神经网络的线性方程求解器设计方法
本专利技术涉及人工神经网络领域,具体涉及一种基于变参收敛神经网络的线性方程求解器设计方法。
技术介绍
人工神经网络,作为模拟动物神经系统的一种并行分布式信号处理的数学模型方法,在过去的几十年间引起了众多研究人员和工程师的注意。在科学、工程以及经济等领域及其相关领域中,大规模实时数学问题频繁出现,如何求解时变矩阵/矢量/代数方程运算、自动控制、最优化计算、信号处理、机器人逆运动学求解等相关问题已成为了解决实际应用的关键所在。随着近代神经网络的发展与深入,各领域研究者已设计出众多具有不同特性的神经网络结构模型。在收敛神经网络方面,基于梯度法的神经网络模型被应用于众多的领域和学科之中。特别是应用于静态定常数学问题求解或变化缓慢的时变问题求解中,且已在模拟硬件电路上获得了实现,但实践证明其并不适用于求解时变问题。方程AXB-C=0在线性代数和控制理论中是一种重要的线性矩阵方程,在模型降阶与图像处理中起到了重要的作用,例如图像融合、聚类、线性最小二次回归、系统能控能观性分析和最优化等。而基于固定参数的张零化神经网络在面对复杂 ...
【技术保护点】
1.一种基于变参收敛神经网络的线性方程求解器设计方法,其特征在于,所述方法包括以下步骤:1)建立具有实数域光滑时变线性矩阵方程形式的实际物理系统或数值求解系统的数学模型;2)通过步骤1)所述系统的传感器获取数学模型的时变参数矩阵,并通过微分器求解其时间导数;3)设计所述系统的误差函数方程;4)通过实数域变参收敛神经网络方法以及所获得的时变参数矩阵及其导数,利用单调递增奇激励函数,设计实数域光滑时变线性矩阵方程求解器,通过方程求解器得到系统的实数域光滑时变线性矩阵方程的唯一最优解,系统的执行端接受该最优解指令并执行。
【技术特征摘要】
1.一种基于变参收敛神经网络的线性方程求解器设计方法,其特征在于,所述方法包括以下步骤:1)建立具有实数域光滑时变线性矩阵方程形式的实际物理系统或数值求解系统的数学模型;2)通过步骤1)所述系统的传感器获取数学模型的时变参数矩阵,并通过微分器求解其时间导数;3)设计所述系统的误差函数方程;4)通过实数域变参收敛神经网络方法以及所获得的时变参数矩阵及其导数,利用单调递增奇激励函数,设计实数域光滑时变线性矩阵方程求解器,通过方程求解器得到系统的实数域光滑时变线性矩阵方程的唯一最优解,系统的执行端接受该最优解指令并执行。2.根据权利要求1所述的基于变参收敛神经网络的线性方程求解器设计方法,其特征在于,步骤1)中,所述实际物理系统或数值求解系统的实数域光滑时变线性矩阵方程形式为线性或者近似线性,将所述系统利用数学建模方法进行模型公式化后,得到如下的实数域光滑时变线性矩阵方程:其中,t表示时间;在实数域中,定义以及是时变参数矩阵;假设未知的矩阵存在,以及它们各自的时间导数被认为是已知、时变且光滑的,通过设计一种变参收敛神经网络模型,能够寻找到满足矩阵方程(1)的唯一最优解为使上述实数域光滑时变线性矩阵方程(1)的求解过程更为简单,首先需要将实数域光滑时变线性矩阵方程从矩阵形式转换为矢量形式;矩阵形式的实数域光滑时变线性矩阵方程(1)等价于如下的矢量形式方程:其中,符号表示克罗内克积,这意味着是一个通过替换矩阵A中的第(i,j)单元的元素aij为aijB的大维度矩阵;算子是一个将矩阵的所有列向量重组为一个1维的长列向量的重构列向量算子;此外,为了保证能够得到唯一解,实数域矩阵方程需要满足唯一解存在条件;实数域光滑时变线性矩阵方程(1)有唯一最优理论解当且仅当其满足其系数矩阵A(t),B(t),C(t)为非奇异矩阵,即矩阵A(t),B(t),C(t)的所有特征值均不为零。3.根据权利要求2所述的基于变参收敛神经网络的线性方程求解器设计方法,其特征在于:步骤2)中,实数域光滑时变线性矩阵方程(1)中的时变参数矩阵A(t),B(t),C(t)由实际系统传感器获取的信号与系统预期运行状态信号组合构成;时变参数矩阵A(t),B(t),C(t),以及它们...
【专利技术属性】
技术研发人员:张智军,付正,郑陆楠,
申请(专利权)人:华南理工大学,
类型:发明
国别省市:广东,44
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。