一种基于硅黄铜组织结构的微织构刀具及其加工方法和应用技术

技术编号:19549805 阅读:20 留言:0更新日期:2018-11-24 21:40
本发明专利技术涉及一种基于硅黄铜组织结构的微织构刀具,在刀具切削刃一定区域范围内设置复合微织构,复合微织构包括凸起织构阵列和纵向织构阵列,凸起织构阵列位于切削刃和纵向织构阵列之间;凸起织构阵列包括多个呈矩形阵列排列的凸起织构,凸起织构的底部为立方体,上端为梯形台;纵向织构阵列包括多个沿着切削刃宽度方向排列成行的纵向织构,纵向织构为长方体,长度方向垂直于切削刃宽度方向。还涉及一种基于硅黄铜组织结构的微织构刀具的加工方法。还涉及一种基于硅黄铜组织结构的微织构刀具的应用。本发明专利技术复合微织构刀具获得的切屑更加卷曲、细小,确实大幅提高了合金材料的断屑性能,属于高性能合金材料的切削加工技术领域。

A Microstructure Tool Based on Silicon Brass Structure and Its Processing Method and Application

The present invention relates to a micro-texture cutter based on silicon brass structure. A composite micro-texture is arranged in a certain area of the cutting edge of the cutter. The composite micro-texture includes a convex texture array and a longitudinal texture array, which are located between the cutting edge and the longitudinal texture array; the convex texture array includes a plurality of rectangular texture arrays. The convex texture arranged in arrays is cubic at the bottom and trapezoidal at the top. The longitudinal texture array consists of several longitudinal textures arranged in rows along the width direction of the cutting edge. The longitudinal texture is cuboid and the length direction is perpendicular to the width direction of the cutting edge. The processing method of a micro-textured cutting tool based on the structure of silicon brass is also involved. The application of a micro-texture tool based on the structure of silicon brass is also involved. The chips obtained by the composite micro-texture cutting tool of the invention are more curly and fine, and the chip breaking performance of the alloy material is indeed greatly improved, which belongs to the cutting technology field of the high-performance alloy material.

【技术实现步骤摘要】
一种基于硅黄铜组织结构的微织构刀具及其加工方法和应用
本专利技术涉及高性能合金材料的切削加工
,具体涉及一种基于硅黄铜组织结构的微织构刀具及其加工方法和应用。
技术介绍
铅黄铜作为铜合金的典型代表,以其优异的强韧性、耐腐蚀、易切削性及易成型性被广泛应用于制造电子电气零件、仪器仪表零件、卫浴产品及儿童玩具等产品。但是,铅是一种重金属元素,当铅黄铜产品在长期的使用过程中及报废后处理不当时,容易对人体健康和自然环境产生很大的影响。因此,研制新型的易切削环保黄铜成为人们越来越关注的问题。有鉴于此,硅黄铜的开发和应用逐渐受到人们的关注。在黄铜中添加Si和Al能够大幅提高锌当量系数,从而获得相含量更高的黄铜,甚至当锌当量超过一定值时,会出现硬而脆的相(参见CN105274387A公开的一种无铅易切削高强耐蚀硅黄铜合金及制备方法与应用);同时,在硅黄铜晶粒内及晶界处会分布高硬度的超细金属间化合物,从而形成“不均匀结构”,由于不同的组成相及金属间化合物的弹性模量、热膨胀系数及显微硬度的显著差异,因而在切削过程中能够起到较好地断屑作用(参考文献:C.Yang,Z.Ding,Q.C.Tao,L.Liang,Y.F.Ding,W.W.Zhang,Q.L.Zhu.High-strengthandfree-cuttingsiliconbrassesdesignedviathezincequivalentrule.MaterialsScience&EngineeringA,723(2018)296–305)。对于一定Si含量范围的硅黄铜,其切削性能有较高的提升,最佳切削性能可达到铅黄铜的80-90%以上。然而,从合金材料成分与组织设计、以及切削参数优化等方面来看,提高合金材料断屑性能或易切削性能的能力是有限的。因此,能否从改进切削工具方面着手提高硅黄铜的断屑性能或易切削性能,成为了一个亟待解决的技术难题。切削加工是指用切削工具(包括刀具、磨具和磨料)把坯料或工件上多余的材料层切去成为切屑,使工件获得规定的几何形状、尺寸和表面质量的加工方法。车削加工是机械切削加工的最主要工艺手段,刀具在这项工艺中占据主导地位,刀具结构在切削过程中对断屑能力至关重要。同时,被切屑合金材料的相组成、相尺寸与硬度、晶粒尺寸及其决定的微观区域力学性能,显著影响着刀具磨损情况及其被切削合金材料的断屑性能或易切削性能。因此,我们提出了以下学术思想:基于合金材料组织结构在刀具上设计一种复合微织构,从而实现有效提高合金材料断屑性能或易切削性能的目的。微织构刀具就是在刀具表面通过一定的加工技术加工出具有一定尺寸和均匀分布的微小结构阵列。表面微织构的加工技术主要包括激光加工、微切削加工、磨削加工、电火花加工、反应离子刻蚀、光刻技术、超声加工、表面压刻技术等。其中,激光加工技术被认为是表面织构领域颇为成功的加工方法之一,主要是由于其对环境无污染,并且具有优良的形状和尺寸控制能力。目前,大量关于仿生摩擦学的研究发现,刀具上高性能的表面微织构可以实现良好的减摩抗黏附性,促进切屑的卷曲和断裂,其应用前景非常广阔,同时也给刀具与工件表面间的减摩带来了新的研究方向和理论依据。理论上讲,在切削过程中,刀具与切屑接触过程中包括紧密型接触和峰点型接触。紧密型接触部分刀屑接触的摩擦力较大使得切屑容易在刀具上发生严重粘结;峰点型接触随着切屑的滑出,摩擦力逐渐减小,同时也存在着部分粘结。这种刀屑之间的摩擦力和粘结会使得切屑剪切面流动速度减慢,不利于切屑的变形和断裂。因此,通过设计刀具微织构改变切屑与刀具之间的接触形式,对于提高合金材料断屑性能或易切削性能有着非常重要的意义。
技术实现思路
针对现有技术中存在的技术问题,本专利技术的目的是:提供一种可大幅提高硅黄铜断屑性能或易切削性能的基于硅黄铜组织结构的微织构刀具及其加工方法和应用。为了达到上述目的,本专利技术采用如下技术方案:一种基于硅黄铜组织结构的微织构刀具,在刀具切削刃一定区域范围内设置复合微织构,复合微织构包括凸起织构阵列和纵向织构阵列,凸起织构阵列位于切削刃和纵向织构阵列之间;凸起织构阵列包括多个呈矩形阵列排列的凸起织构,凸起织构的底部为立方体,上端为梯形台;纵向织构阵列包括多个沿着切削刃宽度方向排列成行的纵向织构,纵向织构为长方体,长度方向垂直于切削刃宽度方向。作为一种优选,在垂直于切削刃方向上,复合微织构距离切削刃10~30μm,复合微织构的长度为3mm,凸起织构阵列的长度为110~150μm,纵向织构阵列距离凸起织构阵列10~20μm。作为一种优选,凸起织构的底部的立方体边长为40~50μm;凸起织构的上端面为矩形,在垂直于切削刃方向上,该矩形的长度同凸起织构的底部的立方体边长,在平行于切削刃方向上,该矩形的宽度为10~20μm。作为一种优选,相邻纵向织构的间距为20~100μm,有效减少切屑在紧密型接触及峰点型接触区域的摩擦和粘结,促进切屑背向流动,有利于切屑的卷曲和断裂。作为一种优选,凸起织构阵列的凸起织构起切削刃刀尖的作用;纵向织构阵列中,在切屑划过纵向织构时,一定数量的纵向织构同时作用于一个晶粒尺寸的范围,从而导致晶粒更容易变形,达到促进切屑变形和断裂的目的。一种基于硅黄铜组织结构的微织构刀具的加工方法,包括如下步骤:(1)刀具准备;(2)复合微织构设计;(3)采用激光加工方法在步骤(1)刀具上加工步骤(2)的复合微织构;(4)合金材料准备;(5)将步骤(3)所得刀具对步骤(4)的合金材料进行切削试验。作为一种优选,步骤(1)为:选择YG8型硬质合金刀具并确定待加工的切削刃位置,将刀具的前刀面用1500#金相砂纸打磨并抛光,清洗吹干;步骤(2)为:将抛光的刀具置于激光加工器,对焦使激光能量聚焦于刀具,然后在刀具表面设计复合微织构;步骤(3)为:在刀具前刀面的切削刃附近进行激光加工,具体的参数为:加工数目80~150,加工速度400~600mm/s,加工功率5~10W,加工频率10~50KHz,加工出复合微织构后,将加工后凸起熔体的前刀面用金相砂纸打磨并抛光,超声震动清洗、吹干;步骤(5)为:将设计的微织构刀具与无织构刀具在相同条件下进行切削试验,切削参数为:切削速度为80~100m/min,进给量为0.1~0.2mm/r,背吃刀量为0.1~0.6mm,切削完成后收集切屑进行分析比较,以评估微织构刀具的断屑性能。作为一种优选,步骤(4)为:按质量百分比为58.5%~60%Cu,37%~39%Zn,0.7%~1.11%Si,0.5%~1%Al,0.01%~0.1%Ti,0~0.01%B准备好纯金属材料,采用低压铸造工艺制备硅黄铜合金,低压铸造工艺参数为:浇铸温度900~1100℃,充型时间3~6s,保压压力0.01~0.04MPa,保压时间10~15s。作为一种优选,步骤(4)中的合金材料为黄铜合金、钛合金或铁合金;当采用黄铜合金时,制备工艺为低压铸造;当采用钛合金时,制备工艺为铸造加塑性变形。可根据工程零件尺寸从而调整合金材料尺寸大小。一种基于硅黄铜组织结构的微织构刀具的应用,用于航天、航空、船舶或医疗领域合金材料切割,如卫浴、五金装饰、散热器、高尔夫球头、医疗器械、机械制造等。本专利技术的原理是:在基于α+β本文档来自技高网
...

【技术保护点】
1.一种基于硅黄铜组织结构的微织构刀具,在刀具切削刃一定区域范围内设置复合微织构,其特征在于:复合微织构包括凸起织构阵列和纵向织构阵列,凸起织构阵列位于切削刃和纵向织构阵列之间;凸起织构阵列包括多个呈矩形阵列排列的凸起织构,凸起织构的底部为立方体,上端为梯形台;纵向织构阵列包括多个沿着切削刃宽度方向排列成行的纵向织构,纵向织构为长方体,长度方向垂直于切削刃宽度方向。

【技术特征摘要】
1.一种基于硅黄铜组织结构的微织构刀具,在刀具切削刃一定区域范围内设置复合微织构,其特征在于:复合微织构包括凸起织构阵列和纵向织构阵列,凸起织构阵列位于切削刃和纵向织构阵列之间;凸起织构阵列包括多个呈矩形阵列排列的凸起织构,凸起织构的底部为立方体,上端为梯形台;纵向织构阵列包括多个沿着切削刃宽度方向排列成行的纵向织构,纵向织构为长方体,长度方向垂直于切削刃宽度方向。2.按照权利要求1所述的一种基于硅黄铜组织结构的微织构刀具,其特征在于:在垂直于切削刃方向上,复合微织构距离切削刃10~30μm,复合微织构的长度为3mm,凸起织构阵列的长度为110~150μm,纵向织构阵列距离凸起织构阵列10~20μm。3.按照权利要求2所述的一种基于硅黄铜组织结构的微织构刀具,其特征在于:凸起织构的底部的立方体边长为40~50μm;凸起织构的上端面为矩形,在垂直于切削刃方向上,该矩形的长度同凸起织构的底部的立方体边长,在平行于切削刃方向上,该矩形的宽度为10~20μm。4.按照权利要求2所述的一种基于硅黄铜组织结构的微织构刀具,其特征在于:相邻纵向织构的间距为20~100μm,有效减少切屑在紧密型接触及峰点型接触区域的摩擦和粘结,促进切屑背向流动,有利于切屑的卷曲和断裂。5.按照权利要求1所述的一种基于硅黄铜组织结构的微织构刀具,其特征在于:凸起织构阵列的凸起织构起切削刃刀尖的作用;纵向织构阵列中,在切屑划过纵向织构时,一定数量的纵向织构同时作用于一个晶粒尺寸的范围,从而导致晶粒更容易变形,达到促进切屑变形和断裂的目的。6.按照权利要求1至5中任一项所述的一种基于硅黄铜组织结构的微织构刀具的加工方法,其特征在于:包括如下步骤(1)刀具准备;(2)复合微织构设计;(3)采用激光加工方法在步骤(1)刀具上加工步骤(2)的复合微织构;(4)合金材料准备;(5)将步骤(3)所得刀具...

【专利技术属性】
技术研发人员:杨超杨玉川梁良丁言飞
申请(专利权)人:华南理工大学广东华艺卫浴实业有限公司
类型:发明
国别省市:广东,44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1