一种提高瑞利散射多参量分布式测量精度的方法技术

技术编号:19421285 阅读:38 留言:0更新日期:2018-11-14 09:24
本发明专利技术公开了一种提高瑞利散射多参量分布式测量精度的方法,其包括以下步骤:通过双芯弱光栅阵列和瑞利散射结合的多参量分布式测量系统得到瑞利散射信号和弱光栅阵列信号;利用小波阈值去噪方法对所得到的两种信号进行去噪处理;采用最小均方根误差算法对瑞利散射强度解调结果进行校准补偿;首先对补偿系数进行种群初始化,利用遗传算法定义适应度函数,保留适应度较大的个体;对保留下来的优势个体进行交叉、变异得到优势子个体;通过循环上述步骤得到满足要求的最优个体,换算出补偿系数值后即可得到高精度的温度和应变分布。本发明专利技术利用新型的遗传算法得到温度和应变的最优补偿量,实现了高精度的多参量分布式测量。

【技术实现步骤摘要】
一种提高瑞利散射多参量分布式测量精度的方法
本专利技术涉及光纤传感
,更具体地说,涉及一种提高瑞利散射多参量分布式测量精度的方法。
技术介绍
随着科学技术的发展和物联网应用要求的提高,光纤传感网络正在向大容量和多参量测量方向发展,基于瑞利散射的多参量分布式测量开始受到重视。受限于技术原理,基于单模光纤瑞利散射的分布式光纤传感系统的信噪比较低,测量精度较低,传感功能比较单一,难以实现对温度和应变的定量检测。目前,以弱光栅作为传感单元对多参量进行分布式测量的方法有:1、文泓桥(文泓桥等,基于弱光纤光栅阵列的分布式振动探测系统研究.中国激光.2017,44(02):0210001.)提出了一种分布式弱光纤光栅阵列振动探测系统,能够实现高灵敏度分布式动态测量。现有弱光纤光栅阵列虽然在动态振动信号测量方面可实现分布式测量,但是,对温度与应变等静态量信号还只是一种准分布式测量,并且由于光纤对温度与应变的交叉敏感温度补偿光栅与测量光栅的位置偏差等都会造成测量精度难以保证,在工程应用中存在困难。2、张旭萍(WangX,etal.SNREnhancedDistributedVibrationFiberSensingSystemEmployingPolarizationOTDRandUltraweakFBGs[J].IEEEPhotonicsJournal,2015,7(1):1-11.)研究了一种融合弱光栅的改进型瑞利分布式光纤传感系统,实现分布式振动传感测量,提升了振动测量的灵敏度,但该方案只是利用瑞利散射光的偏振态进行振动测量,对温度/应变只能在弱光栅部位实行检测,不能实现温度/应变的分布式测量,且不能克服温度和应变交叉敏感的问题。目前采用弱光纤光栅阵列对光纤沿线所有位置同时进行应变和温度等参量长距离快速分布式精确监测,未见报道。
技术实现思路
本专利技术的目的在于克服现有技术的不足,提供一种提高瑞利散射多参量分布式测量精度的方法。本专利技术的目的是通过以下技术方案来实现的:设计一种提高瑞利散射多参量分布式测量精度的方法,宽带光源发出的光经过耦合器分为两束探测光及一束参考光,探测光经环形器和双芯光纤耦合器,通过弱光栅阵列和瑞利散射效应,最后经过光电转换,将得到的两种光谱数据传输到计算机上,参考光则直接通过光电二极管转换为电信号后传输到计算机上,该方法包括以下步骤(以温度参量为例):Step1,通过双芯弱光栅阵列和瑞利散射结合的多参量分布式测量系统得到瑞利散射信号和弱光栅阵列信号;Step2,利用小波阈值去噪方法对步骤Step1所得到的两种光谱数据进行去噪处理;Step3,以弱光栅阵列信号波长解调的结果作为温度的参考值,以瑞利背向散射强度解调的结果作为温度的初测值,假定存在温度补偿ΔTe;Step4,采用均方根误差σ对瑞利背向散射信号进行校准:以弱光栅阵列信号为基准,对瑞利背向散射信号求均方根误差;Step5,确定ΔTe的上下界,对种群进行初始化,随机生成M个ΔTe值,利用遗传算法,定义适应度函数,保留适应度不低于20的优势个体,将保留下来的优势个体进行交叉和变异操作,保留优势子个体;Step6,反复执行步骤Step5并记录满足预期的最优个体,得到ΔTe值后即可得到瑞利散射分布式测量校准后的温度。优选地,在所述步骤Step2中,根据两种光谱信号各自的特性,分别进行小波分解,对分解后每层信号设置阈值进行滤波后获得平滑的重构信号。优选地,在所述Step3和Step4中,假定存在温度补偿ΔTe,定义σ满足:公式(1)中,N为样本个数,x为每个光栅位置的精确定位,T(x)为瑞利背向散射测得的温度数值,Tw(x)为弱光栅阵列测得的温度数值。优选地,在所述步骤Step5中,根据每个光栅位置处两种光谱信号解调的温度差值,确定ΔTe的上界和下界;将满足ΔTe上下界的值根据需要的精度划分成2n个个体,每个ΔTe值用0~2n-1的二进制码代替,并随机产生M个数字串构成初始种群;定义适应度函数:依概率保留适应度不低于20的个体,并将保留下来的优势个体进行随机的单点交叉和单点变异操作,直到得到满足精度要求的σ值,结束循环,此时得到的ΔTe值为温度补偿值,T(x)+ΔTe为最终温度值;其中,单点交叉是指两个二进制码的随机某一位相互交叉,单点变异是指二进制码随机某一位由0变异成1。本专利技术与现有技术相比,具有以下有益效果:1、本专利技术利用双芯弱光栅阵列波长解调获得的高精度温度与应变值作为参考值,对瑞利散射信号解调出的温度和应变值进行校准。2、本专利技术利用新型的遗传算法确定温度补偿量的最佳值,减少了运算次数,提高了运算速度,最终实现温度和应变高精度分布式测量。附图说明下面将结合附图及实施例对本专利技术作进一步说明,附图中:图1为本专利技术实施例中多参量分布式测量系统的结构示意图;图2为本专利技术实施例中温度补偿的流程框图。图1中:1-宽带光源;2-耦合器;3-环形器;4-双芯光纤耦合器;5-双芯光纤;6-弱光栅阵列;7-光纤延时线;8-陷波滤波片;9-信息采集单元;10-光电二极管;11-计算机。具体实施方式下面结合附图对本专利技术作进一步的描述。本专利技术提供一种提高瑞利散射多参量分布式测量精度的方法,如图1所示,宽带光源1发出的光经过耦合器2分为两束探测光及一束参考光,探测光经环形器3和双芯光纤耦合器4,通过弱光栅阵列6和瑞利散射效应,最后经过光电转换,将得到的两种光谱数据传输到计算机11上,参考光则直接通过光电二极管10转为电信号后传输到计算机11上,该方法包括以下步骤,以温度测量为例,如图2所示:Step1,根据两种光谱信号的各自特点,通过小波阈值去噪方法对其进行去噪处理,获得比较平滑的重构信号;Step2,以弱光栅阵列信号波长解调的结果作为温度的参考值,以瑞利背向散射强度解调的结果作为温度的初测值,假定存在温度补偿ΔTe,定义均方根误差σ满足:公式(1)中,N为样本个数,x为每个光栅位置的精确定位,T(x)为瑞利背向散射测得的温度数值,Tw(x)为弱光栅阵列测得的温度数值,ΔTe为温度补偿值的两个常系数。Step3,在每个光栅位置x处,计算出参考值和初测值的差ΔT,确定出ΔTe的上界和下界;将满足ΔTe上下界的值根据要求的精度划分成2n个个体,每一个ΔTe值按照顺序用0~2n-1的二进制码代替。比如:若n取8,第3个(k,b)值所对应的二进制码为00000010。Step4,随机产生M个数字串构成初始种群,定义适应度函数公式(2)所示:则某个体j被选中作为父个体的概率如公式(3)所示:将保留下来的父个体进行随机的单点交叉和单点变异操作,直到得到满足精度要求的σ值,结束循环,此时得到的ΔTe值即可作为温度补偿值,T(x)+ΔTe即为最终温度值。比如,取初始种群数M为128,假定M中的10100010和01110101作为保留下来的父类,将上述两个优势个体中的随机一位进行交叉或变异,得到子个体,若适应度比父类适应度大,则保留,否则剔除,交叉和变异操作均以一定概率进行,直到求出需要的ΔTe值,即可得到补偿后的温度值。附图对本专利技术的实施例进行了描述,但是本专利技术并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本专利技术本文档来自技高网
...

【技术保护点】
1.一种提高瑞利散射多参量分布式测量精度的方法,其特征在于,该方法包括以下步骤:Step1,通过双芯弱光栅阵列和瑞利散射结合的多参量分布式测量系统得到瑞利散射信号和弱光栅阵列信号;Step2,利用小波阈值去噪方法对步骤Step1所得到的两种光谱数据进行去噪处理;Step3,以弱光栅阵列信号波长解调的结果作为温度的参考值,以瑞利背向散射强度解调的结果作为温度的初测值,假定存在温度补偿ΔTe;Step4,采用均方根误差σ对瑞利背向散射信号进行校准:以弱光栅阵列信号为基准,对瑞利背向散射信号求均方根误差;Step5,确定ΔTe的上下界,对种群进行初始化,随机生成M个ΔTe值,利用遗传算法,定义适应度函数,保留适应度不低于20的优势个体,将保留下来的优势个体进行交叉和变异操作,保留优势子个体;Step6,反复执行步骤Step5并记录满足预期的最优个体,得到ΔTe值后即可得到瑞利散射分布式测量校准后的温度。

【技术特征摘要】
1.一种提高瑞利散射多参量分布式测量精度的方法,其特征在于,该方法包括以下步骤:Step1,通过双芯弱光栅阵列和瑞利散射结合的多参量分布式测量系统得到瑞利散射信号和弱光栅阵列信号;Step2,利用小波阈值去噪方法对步骤Step1所得到的两种光谱数据进行去噪处理;Step3,以弱光栅阵列信号波长解调的结果作为温度的参考值,以瑞利背向散射强度解调的结果作为温度的初测值,假定存在温度补偿ΔTe;Step4,采用均方根误差σ对瑞利背向散射信号进行校准:以弱光栅阵列信号为基准,对瑞利背向散射信号求均方根误差;Step5,确定ΔTe的上下界,对种群进行初始化,随机生成M个ΔTe值,利用遗传算法,定义适应度函数,保留适应度不低于20的优势个体,将保留下来的优势个体进行交叉和变异操作,保留优势子个体;Step6,反复执行步骤Step5并记录满足预期的最优个体,得到ΔTe值后即可得到瑞利散射分布式测量校准后的温度。2.根据权利要求1所述的一种提高瑞利散射多参量分布式测量精度的方法,其特征在于,在所述步骤Step2中,根据两种光谱信号各自...

【专利技术属性】
技术研发人员:童杏林潘旭张翠邓承伟郑志远
申请(专利权)人:武汉理工大学
类型:发明
国别省市:湖北,42

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1