当前位置: 首页 > 专利查询>南京大学专利>正文

一种多角度观测精确反演植被阴阳叶日光诱导叶绿素荧光的方法技术

技术编号:19239299 阅读:40 留言:0更新日期:2018-10-24 03:18
本发明专利技术提供了一种利用多角度观测系统获取的植被冠层光谱数据精确反演冠层阴阳叶日光诱导叶绿素荧光的方法,属于植被遥感反演参数获取方法的研究领域。其步骤为:多角度超高光谱观测系统的建立;多角度超高光谱数据的获取;计算太阳入射和冠层反射辐亮度;计算冠层反射率和反演叶绿素荧光;利用叶片夹观测叶片反射率;利用冠层反射率和叶片反射率的比值,结合几何光学模型,计算不同观测角度阴阳叶的比例;通过最小二乘法拟合得到阴叶和阳叶的荧光。本发明专利技术可获取连续的多角度植被冠层超高光谱数据,用于反演叶绿素荧光,结合叶片反射率和几何光学模型,简单有效的计算不同观测角和太阳入射角的冠层阴阳叶比例,分别计算阴叶和阳叶的荧光,提高陆地初级生产力监测的精度。

A method of accurately retrieving chlorophyll fluorescence from vegetation leaves by multi angle observation

The invention provides a method for accurately retrieving sunlight-induced chlorophyll fluorescence from canopy spectral data obtained by a multi-angle observation system, belonging to the research field of retrieving parameters of vegetation remote sensing. The steps are: the establishment of multi-angle hyperspectral observation system; the acquisition of multi-angle hyperspectral data; the calculation of solar incidence and canopy reflectance radiance; the calculation of canopy reflectance and chlorophyll fluorescence inversion; the use of leaf clips to observe leaf reflectance; the use of canopy reflectance and leaf reflectance ratio, combined with geometric light. The fluorescence of the two leaves was obtained by least square fitting. The method can obtain continuous multi-angle vegetation canopy hyperspectral data for inversion of chlorophyll fluorescence. Combined with leaf reflectance and geometrical optics model, the ratio of canopy yin-yang leaves at different observation angles and solar incidence angles can be calculated simply and effectively, and the fluorescence of both yin-yang leaves and Yang-Yang leaves can be calculated respectively, so as to improve the monitoring of land primary productivity. Precision.

【技术实现步骤摘要】
一种多角度观测精确反演植被阴阳叶日光诱导叶绿素荧光的方法一、
本专利技术涉及一种利用多角度观测系统获取的植被冠层光谱数据精确反演冠层阴阳叶日光诱导叶绿素荧光的方法,具体地说,是指一种集成的多角度超高光谱自动观测系统获取多角度植被冠层反射光谱,计算不同太阳天顶角不同观测角下,植被冠层阴叶和阳叶各自叶绿素荧光的方法,属于植被遥感反演参数获取方法的研究领域。二、
技术介绍
植被总初级生产力是指植物通过光合作用固化二氧化碳的能力,是陆地生态系统在自然条件下的生产能力。植被总初级生产力是全球碳循环的最大碳通量,植被总初级生产力直接决定了陆地生态系统后序碳循环要素,也关系到陆地生态系统对人类可持续发展的支持能力。因此,植被总初级生产力是估算地球支持能力和评价生态系统可持续发展的重要指标,也一直是目前地球系统科学研究的热点。目前陆地生态系统生产力估算主要有生态系统模型和基于植被指数的光能利用率模型。由于目前模型对于一些关键的生态过程描述不清,或者由于模型结构、参数和输入数据等方面的原因,当前模型生产力的估算尚存在较大的不确定性,模拟能力仍有待提高。而现有遥感技术虽然能提取出与地表碳通量、储量相关的植被参数,但是这些植被参数无法直接反应植物生理活动,不能直接反应陆地生态系统碳通量信息,因此需要用新的观测数据对模型估算进行优化,以提高对区域植被生产力的模拟精度。日光诱导叶绿素荧光弥补了当前植被遥感观测的不足,可以为陆地生态系统生产力估算提供新的思路和方法。日光诱导叶绿素荧光(以下简称荧光)是由植物光合中心发射出的光谱信号(650-800nm),可以反映植被的光合作用状态,被誉为“光合探针”。植被吸收的光能有三个去向,分别是光合作用、热耗散和荧光。植被用于光合作用的能量不足吸收光能的20%,而大部分能量通过热耗散释放,少部分能量通过荧光形式释放。由于这三种能量紧密相关,存在着此消彼长的关系,因此在吸收太阳辐射能量一定的情况下,可以通过观测荧光更为直接探测植被的光合作用等有关信息。相比植被指数,荧光更能够反映植被的光合动态变化,因此逐渐成为陆地生态系统生产力估算的研究热点。Frankenberg等人在“NewglobalobservationsoftheterrestrialcarboncyclefromGOSAT:Patternsofplantfluorescencewithgrossprimaryproductivity”一文中提出通过卫星反演荧光的方法,利用叶绿素荧光遥感探测区域及全球尺度植被光合作用,进而估算陆地生态系统生产力。在全球和季节尺度上GOSAT卫星反演得到的近红外波段的荧光与模拟得到的生产力呈线性关系,但不同生态系统差异明显。同时,虽然卫星荧光遥感的结果揭示荧光与生产力在季节尺度上具有线性关系,但观测与模拟研究表明,受环境因素影响,叶片和冠层的叶绿素荧光和光合作用的关系呈非线性,尤其是在短时间尺度上。这表明荧光与生产力的关系还受到其他因素如植被的冠层结构、相关植物生理机制影响。因此,为了利用荧光遥感信息估算生产力,确定不同时间、空间尺度下的荧光与生产力的关系,对不同生态系统和环境条件下冠层荧光和光合作用的长期连续同步观测十分重要。在不同的生态系统和环境条件下对冠层叶绿素荧光和光合作用的长期同步连续观测,有利于为基于叶绿素荧光的不同生态系统的生产力估算模型提供有效的数据,同时可以对卫星数据作为验证参考,对当前正在发展的基于叶绿素荧光遥感的光合作用探测及全球碳循环模拟有重要意义。然而,光学遥感观测受到冠层的二向性反射的影响,单一角度的观测无法排除众多因素的干扰。而且,现有的研究很少考虑植被冠层内部阴影叶片(即阴叶)和光照叶片(即阳叶)在叶绿素荧光和光合作用方面的固有差别,必然会影响到冠层叶绿素荧光和生产力之间关系结论。越来越多的研究开始认识到阴叶和阳叶荧光的差别,试图从冠层观测数据中对其进行分离,以建立更好的光合作用生产力遥感估算模型。三、
技术实现思路
本专利技术的目的是:提供一套利用多角度观测系统同时获取太阳入射光谱和植被冠层多角度反射光谱的方法,用于计算太阳辐照度和植被冠层不同角度的辐亮度,进而计算不同观测角度植被冠层的荧光。利用不同观测角度的冠层反射率和叶片反射率,模拟不同太阳天顶角下特定观测角度阴叶和阳叶的比例,进而估算阴叶和阳叶各自的荧光,作为准确估算生产力的基础。本专利技术的原理如下:利用一套安装在通量塔上的全自动多角度超高光谱观测系统,该系统主要由以下设备组成:超高光谱分辨率光谱仪、切换光路的光开关以同时获取太阳入射光和植被反射光,可垂直水平旋转的云台,以及装载自动观测软件平台的电脑。该系统可长期获取每日连续的太阳入射光谱和多角度的植被冠层反射光谱,用于计算太阳辐照度和冠层辐亮度,进而计算冠层荧光,可获得不同太阳入射光强下的荧光变化趋势。结合多角度冠层反射率和叶片反射率,模拟不同时刻不同太阳天顶角特定观测角度阴叶和阳叶的比例,消除冠层二向性反射的影响,精确估算该观测角度瞬时的阴叶和阳叶各自的荧光。本专利技术的技术方案主要包括以下步骤:1.首先建立光谱观测硬件系统。超高光谱分辨率光谱仪由美国Oceanoptics公司生产,型号为QEPRO,光谱范围为650-800nm,光谱分辨率为0.3nm,通过USB接口与电脑连接传输信号。光谱仪集成在恒温箱系统中,内置压缩机和升温设备,保证系统温度稳定。光谱仪仅一个光路通道,因此连接一个“Y”型分叉光纤,将一个光路分为两个,分叉光纤的两个光路连接到一个光路切换开关上。开关通过标配数据线与光谱仪连接,通过光谱仪与电脑的连接接收指令,进行光路切换的操作。开关另一端外接两个长光纤,构成两个光路,用于太阳入射光和冠层反射光的观测。光路1配合余弦接收器使用,测太阳入射光谱,余弦接收器水平向上安装。光路2为裸光纤,测冠层反射光谱,瞬时视场角为22.5°,安装在一个45°的支架上,使探头与垂直方向呈45°向下观测植被冠层。支架安装在FLIR公司提供的云台上,型号为PTU-D46-17.5W。云台旋转头安装在室外,通过数据线与云台控制器相连。旋转头水平旋转范围是-159°~159°,垂直旋转范围是-42°~37°,安装45°的支架后,探头观测天顶角的垂直范围改为3°~82°。云台控制器的信号传输接口为RS232,RS232转成USB接口与电脑连接。云台与下行光纤均安装在室外的水平架上,初始位置朝正北安装,以尽可能多的观测到冠层的阳叶部分。光谱仪恒温箱、分叉光纤和光路切换开关等配件安装在防水箱内,和云台控制器与电脑放置于户外百叶箱内。2.软件控制。观测系统的软件由MATLAB与C语言混编,主体为MATLAB图形界面编写的程序。程序主要由光谱仪与云台的初始化、光谱仪积分时间优化、光谱仪扫描、云台转动、数据采集和数据存储等部分组成。由于野外天气不确定性,以及光谱仪记录数值范围有限,为达到光谱仪最佳的探测效果,既不使记录数据过小,也不使记录数据饱和,本系统采用了自动优化积分时间的方法,通过太阳光强度变化自动调节采集光谱的时间,保证采集到的光谱信号精确有效。计算公式为:T=IT×targetDN/max(1)其中,IT为自定义的初始积分时间,targetDN为用户自定义的理想光谱仪记录值本文档来自技高网
...

【技术保护点】
1.一种多角度观测精确反演植被阴阳叶日光诱导叶绿素荧光的方法,其主要包括以下步骤:(1)超高光谱观测硬件系统的建立。超高光谱分辨率光谱仪由美国Ocean optics公司生产,型号为QEPRO,光谱范围为650‑800nm,光谱分辨率为0.3nm,通过USB接口与电脑连接传输信号。光谱仪集成在恒温箱系统中,内置降温压缩机和升温设备,保证系统温度稳定。光谱仪仅一个光路通道,因此连接一个“Y”型分叉光纤,将一个光路分为两个,分叉光纤的两个光路连接到一个光路切换开关上。开关通过标配数据线与光谱仪连接,通过光谱仪与电脑的连接接收指令,进行光路切换的操作。开关另一端外接两个长光纤,构成两个光路,用于太阳入射光和冠层反射光的观测。光路1配合余弦接收器使用,测太阳入射光谱,余弦接收器水平向上安装。光路2为裸光纤,测冠层反射光谱,瞬时视场角为22.5°,安装在一个45°的支架上,使探头与垂直方向呈45°向下观测植被冠层。支架安装在FLIR公司提供的云台上,型号为PTU‑D46‑17.5W。云台旋转头安装在室外,通过数据线与云台控制器相连云台控制器的信号传输接口为RS232,RS232转成USB接口与电脑连接。云台与下行光纤均安装在室外的水平架上,初始位置朝正北安装,以尽可能多的观测到冠层的阳叶部分。光谱仪恒温箱、分叉光纤和光路切换开关等配件安装在防水箱内,和云台控制器与电脑放置于户外百叶箱内;(2)利用MATLAB为平台编写的软件控制观测系统的运行,采用优化积分时间算法来确定光谱仪采集数据的积分时间,保证采集到的光谱信号精确有效。计算公式为:T=IT×targetDN/max     (1)其中,IT为自定义的初始积分时间,targetDN为用户自定义的理想光谱仪记录值,max为在用户自定义IT时间内采集到的光谱最大的光谱仪记录值。同时,设定最大积分时间,防止出现积分时间无穷大的情况;(3)观测的具体流程为:云台转到某一角度后,利用光路切换开关将光路切换至太阳入射光观测光路,按照初始积分时间采集一条太阳入射光谱,使用公式1计算优化的积分时间,然后按照优化的积分时间观测一条太阳入射光谱并记录数据,随后利用光路切换开关关闭光路,按优化的积分时间记录一条暗电流,即没有光进入光谱仪而由光谱仪自身产生的噪声数据。然后利用光路切换开关打开冠层反射光观测光路,重复以上步骤以获取冠层反射光谱和对应的暗电流。至此一个观测循环结束,云台转到下一个角度;(4)利用记录有不同波段辐亮度值的标准光源对光谱仪进行定标,获得将光谱仪记录值转换为辐亮度的定标系数。观测获得的光谱数据,首先减去暗电流,然后除以积分时间,将积分时间归一化到1秒,再乘以定标系数,得到辐亮度值。冠层反射光的辐亮度除以太阳入射光的辐亮度得到反射率。(5)冠层反射由冠层的真实反射ρ和荧光F两部分组成,采用光谱拟合方法反演荧光F,可将ρ和F用多项式模型表达,冠层反射的辐亮度L表示为:...

【技术特征摘要】
1.一种多角度观测精确反演植被阴阳叶日光诱导叶绿素荧光的方法,其主要包括以下步骤:(1)超高光谱观测硬件系统的建立。超高光谱分辨率光谱仪由美国Oceanoptics公司生产,型号为QEPRO,光谱范围为650-800nm,光谱分辨率为0.3nm,通过USB接口与电脑连接传输信号。光谱仪集成在恒温箱系统中,内置降温压缩机和升温设备,保证系统温度稳定。光谱仪仅一个光路通道,因此连接一个“Y”型分叉光纤,将一个光路分为两个,分叉光纤的两个光路连接到一个光路切换开关上。开关通过标配数据线与光谱仪连接,通过光谱仪与电脑的连接接收指令,进行光路切换的操作。开关另一端外接两个长光纤,构成两个光路,用于太阳入射光和冠层反射光的观测。光路1配合余弦接收器使用,测太阳入射光谱,余弦接收器水平向上安装。光路2为裸光纤,测冠层反射光谱,瞬时视场角为22.5°,安装在一个45°的支架上,使探头与垂直方向呈45°向下观测植被冠层。支架安装在FLIR公司提供的云台上,型号为PTU-D46-17.5W。云台旋转头安装在室外,通过数据线与云台控制器相连云台控制器的信号传输接口为RS232,RS232转成USB接口与电脑连接。云台与下行光纤均安装在室外的水平架上,初始位置朝正北安装,以尽可能多的观测到冠层的阳叶部分。光谱仪恒温箱、分叉光纤和光路切换开关等配件安装在防水箱内,和云台控制器与电脑放置于户外百叶箱内;(2)利用MATLAB为平台编写的软件控制观测系统的运行,采用优化积分时间算法来确定光谱仪采集数据的积分时间,保证采集到的光谱信号精确有效。计算公式为:T=IT×targetDN/max(1)其中,IT为自定义的初始积分时间,targetDN为用户自定义的理想光谱仪记录值,max为在用户自定义IT时间内采集到的光谱最大的光谱仪记录值。同时,设定最大积分时间,防止出现积分时间无穷大的情况;(3)观测的具体流程为:云台转到某一角度后,利用光路切换开关将光路切换至太阳入射光观测光路,按照初始积分时间采集一条太阳入射光谱,使用公式1计算优化的积分时间,然后按照优化的积分时间观测一条太阳入射光谱并记录数据,随后利用光路切换开关关闭光路,按优化的积分时间记录一条暗电流,即没有光进入光谱仪而由光谱仪自身产生的噪声数据。然后利用光路切换开关打开冠层反射光观测光路,重复以上步骤以获取冠层反射光谱和对应的暗电流。至此一个观测循环结束,云台转到下一个角度;(4)利用记录有不同波段辐亮度值的标准光源对光谱仪进行定标,获得将光谱仪记录值转换为辐亮度的定标系数。观测获得的光谱数据,首先减去暗电流,然后除以积分时间,将积分时间归一化到1秒,再乘以定标系数,得到辐亮度值。冠层反射光的辐亮度除以太阳入射光的辐亮度得到反射率。(5)冠层反射由冠层的真实反射ρ和荧光F两部分组成,采用光谱拟合方法反演荧光...

【专利技术属性】
技术研发人员:张乾张永光李季李朝晖王敏
申请(专利权)人:南京大学
类型:发明
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1