一种基于生成对抗网络的动力电池配组方法技术

技术编号:18915139 阅读:31 留言:0更新日期:2018-09-12 03:29
本发明专利技术涉及一种基于生成对抗网络的动力电池配组方法。现有配组方法需要人为的提取表征电池的特征向量,配组过程劳动力需求大,且易受人为主观因素影响,造成电池误配现象。本发明专利技术方法首先获取所有待配电池的充放电数据,并对数据进行预处理,然后构建一个生成对抗网络,即生成器和判别器。再利用训练好的生成器构建一个神经网络模型,以该神经网络作为特征提取器,自动提取充放电数据的特征,最终对所有电池的特征向量进行聚类,完成电池配组。本发明专利技术方法能够在已经学习到充放电数据分布的生成器的基础上,再训练一个能够提取特征的神经网络,很好的学习到动力电池的一致性特征,提高配组电池之间的一致性,从而提高成组电池的品质。

A power battery matching method based on generation of countermeasure network

The invention relates to a power battery matching method based on generation of antagonism network. The existing batteries matching methods need to extract the characteristic vectors of the battery artificially. In the process of battery matching, there is a large demand for labor, and it is easy to be influenced by subjective factors, resulting in the phenomenon of battery mismatching. The method firstly obtains the charging and discharging data of all the batteries to be distributed, preprocesses the data, and then constructs a generating countermeasure network, namely a generator and a discriminator. Then a neural network model is constructed by using the trained generator, and the neural network is used as feature extractor to automatically extract the characteristics of charge and discharge data. Finally, the feature vectors of all batteries are clustered to complete battery allocation. The method of the invention can train a neural network which can extract features on the basis of the generator that has learned the charge and discharge data distribution, and can learn the consistency characteristics of the power battery well, improve the consistency between the batteries, thereby improving the quality of the batteries in groups.

【技术实现步骤摘要】
一种基于生成对抗网络的动力电池配组方法
本专利技术属于动力电池生产
,具体涉及到一种基于生成对抗网络的动力电池配组方法。
技术介绍
随着社会的发展和进步,不断有新的技术进入到人们的生活中,如近几年随着人工智能技术的迅速发展,使得深度学习成为了技术热潮。而电动自行车作为人们日常生活中的交通工具。它的动力来源主要是动力电池,但是其实际使用寿命却成为了电动车发展的瓶颈,因为单体电池无法满足电动自行车的电压和功率要求,因此,动力电池将会以电池组的形式存在。动力电池组通常是由3节或者是4节单体动力电池组成,串联在一起的电池会随着单体电池间内部物理特性的不一致性,从而影响整个电池组的寿命。并且电池的不一致性,会随着反复的充放电进一步加剧电池组的不一致性,使得整体的电池容量变得更低,从而影响到电池组的使用寿命。因此,在电池配组过程中,减小电池组中单体电池间的不一致性,可以提高电池组的整个电池组的寿命,而且,目前国内各大动力电池生产厂商基本上都是以全人工的方式,来从电池充放电曲线中选取若干个端电压作为配组依据,对电池进行配组,整个过程不仅工作量大,还容易受到人为主观因素的影响,且选取的表征电池的特征并不能很好的反应出单体电池的特性,从而导致电池误匹配的情况。
技术实现思路
本专利技术的目的就是为了克服人工特征提取的片面性、提高配组过程的生产效率,提出了一种基于生产对抗网络的动力电池配组方法,可以根据同一充放电回路中的所有电池的充放电数据,自动化的完成电池配组,并且能够提高电池组单体电池间的一致性。本专利技术该方法的具体步骤如下:步骤1、获取同一回路中的n只电池的充放电电压数据;对回路以电流大小为C1进行恒流放电,每隔时间Td测量回路中所有电池的端电压,直至放电时间达到T1,设第i只电池的端电压序列为d表示放电,M=T1/Td为放电序列长度;以电流大小为C2对回路中的电池进行恒流充电,每隔时间Tc测量回路中所有电池的端电压,直至充电时间达到T2,设第i只电池的端电压序列为c表示充电,N=T2/Tc为充电序列长度;因此,每一只电池的电压数据序列为,序列长度为(M+N);步骤2、对n只电池的充放电电压数据进行预处理;将步骤1中获得的所有电池的端电压序列进行归一化,其中第i只电池的第p个端电压的归一化值为p是端电压序列的索引,1≤p≤M+N;其中,公式(3)中的是指第i只电池,在第p个端电压的值,当p小于等于M时,表征的是放电电压当大于等于(M+1)时,表征的是充电电压公式(1)中的μp是n只电池在第p个端电压的平均值,公式(2)中的σp是n只电池在第p个端电压的标准差;步骤3、构建生成对抗网络模型NN1;首先,输入n组符合高斯分布的K维随机张量到对抗网络模型NN1的生成器G中,得到n*(M+N)维的输出张量,生成对抗网络模型NN1的生成器G的输入节点数为K,输出节点数为(M+N),隐藏层节点数为H1,H1为此时,生成器G的输出张量的大小为n*(M+N),即n组样本,每一组样本的维度是(M+N),令这n组样本的每一组样本的标签为0,即作为假样本;然后,对步骤2生成的n组归一化后的电压数据样本的标签为1,即作为真样本;训练生成对抗网络中的判别器D,判别器D为有监督的二分类模型;输入节点数为(M+N),输出节点数为1,隐藏层节点数为H2,H2为对模型进行训练获得其生成器的最优权值矩阵W3、W4和偏置向量b3、b4,其中W3的大小为(M+N)*H2,b3为H2*1,W4的大小为H2*1,b4为1*1,并在判别器D的输出节点采用sigmoid作为非线性映射激活函数,函数表达式为训练生成对抗网络的生成器G,将生成对抗网络的生成器G和判别器D一起训练,训练过程中固定判别器D的参数W3、W4、b3和b4,只更新生成器G的参数W1、W2、b1和b2;令步骤3中生成的n组符合高斯分布的K维随机张量所对应的标签为1,即所对应的标签张量大小为n*1;对模型进行训练获得其生成器G的最优权值矩阵W1、W2和偏置向量b1、b2,其中W1的大小为K*H1,b1为H1*1,W2的大小为H1*(M+N),b2为(M+N)*1,并在生成器G的输出节点采用sigmoid作为非线性映射激活函数,完成一次生成器的训练;步骤4、构建神经网络模型NN2;首先,将步骤3中生成的n组符合高斯分布的K维随机张量输入步骤3中训练好的生成对抗网络的生成器G中,得到n*(M+N)维的输出张量;把该输出张量作为的神经网络模型NN2的输入数据,将n*K维的张量作为神经网络模型NN2所对应的标签;神经网络模型NN2的输入节点数为(M+N),输出节点数为K,隐藏层节点数为H3,H3为因此,对模型进行训练获得其生成器的最优权值矩阵W5、W6和偏置向量b5、b6,其中W5的大小为(M+N)*H3,b5为(M+N)*1,W6的大小为H3*K,b6为K*1;步骤5、根据步骤4中得到的神经网络模型NN2,对所有n只电池的充放电序列进行特征提取:计算所有充放电序列通过NN2所得到的输出向量,即为所提取出的充放电序列特征;步骤6、对上述步骤5中得到的充放电序列的特征向量进行聚类,将聚为一类的电池配为一组。基于本方法的动力电池配组结果与传统的人工配组相比,可以自动的提取出能够表征电池充放电数据的特征向量,故能够很好的提高组内单体电池间的一致性,从而提高电池组的使用寿命。附图说明图1为本专利技术方法中生成对抗网络模型NN1的结构图;图2为本专利技术方法中的整体结构框图。图3为本专利技术中生成器G、判别器D和神经网络模型NN2的内部结构图。图1~3中input表示输入、output表示输出、G表示生成器、D表示判别器,real是真实样本数据集,即电池充放电序列、NN2表示神经网络、h表示隐藏层,Wi是输入层到隐藏层的权值,大小为[输入层节点数*隐藏层节点数],bi为隐藏层的偏置,大小为[隐藏层节点数*1],Wj是隐藏层到输出层的权值,大小为[隐藏层节点数*输出层节点数],bj为输出层的偏置,大小为[输出层节点数*1]。具体实施方式一种基于生成对抗网络的动力电池配组方法,具体步骤是:步骤1、获取同一回路中的n只电池的充放电电压数据;对回路以电流大小为C1进行恒流放电,每隔时间Td测量回路中所有电池的端电压,直至放电时间达到T1,设第i只电池的端电压序列为d表示放电,M=T1/Td为放电序列长度;以电流大小为C2对回路中的电池进行恒流充电,每隔时间Tc测量回路中所有电池的端电压,直至充电时间达到T2,设第i只电池的端电压序列为c表示充电,N=T2/Tc为充电序列长度。因此,每一只电池的电压数据序列为,序列长度为(M+N);步骤2、对n只电池的充放电电压数据进行预处理;将步骤1中获得的所有电池的端电压序列进行归一化,其中第i只电池的第p个端电压的归一化值为p是端电压序列的索引,1≤p≤M+N。其中,公式(3)中的是指第i只电池,在第p个端电压的值,当p小于等于M时,表征的是放电电压当大于等于(M+1)时,表征的是充电电压公式(1)中的μp是n只电池在第p个端电压的平均值,公式(2)中的σp是n只电池在第p个端电压的标准差。步骤3、如图1所示构建生成对抗网络模型NN1;首先,输入n组符合高斯分布的K维随机张量到对抗网络模型N本文档来自技高网...

【技术保护点】
1.一种基于生成对抗网络的动力电池配组方法,其特征在于,该方法的具体步骤如下:步骤1、获取同一回路中的n只电池的充放电电压数据;对回路以电流大小为C1进行恒流放电,每隔时间Td测量回路中所有电池的端电压,直至放电时间达到T1,设第i只电池的端电压序列为

【技术特征摘要】
1.一种基于生成对抗网络的动力电池配组方法,其特征在于,该方法的具体步骤如下:步骤1、获取同一回路中的n只电池的充放电电压数据;对回路以电流大小为C1进行恒流放电,每隔时间Td测量回路中所有电池的端电压,直至放电时间达到T1,设第i只电池的端电压序列为d表示放电,M=T1/Td为放电序列长度;以电流大小为C2对回路中的电池进行恒流充电,每隔时间Tc测量回路中所有电池的端电压,直至充电时间达到T2,设第i只电池的端电压序列为c表示充电,N=T2/Tc为充电序列长度;因此,每一只电池的电压数据序列为,序列长度为(M+N);步骤2、对n只电池的充放电电压数据进行预处理;将步骤1中获得的所有电池的端电压序列进行归一化,其中第i只电池的第p个端电压的归一化值为p是端电压序列的索引,1≤p≤M+N;其中,公式(3)中的是指第i只电池,在第p个端电压的值,当p小于等于M时,表征的是放电电压当大于等于(M+1)时,表征的是充电电压公式(1)中的μp是n只电池在第p个端电压的平均值,公式(2)中的σp是n只电池在第p个端电压的标准差;步骤3、构建生成对抗网络模型NN1;输入n组符合高斯分布的K维随机张量到对抗网络模型NN1的生成器G中,得到n*(M+N)维的输出张量,生成对抗网络模型NN1的生成器G的输入节点数为K,输出节点数为(M+N),隐藏层节点数为H1,H1为此时,生成器G的输出张量的大小为n*(M+N),即n组样本,每一组样本的维度是(M+N),令这n组样本的每一组样本的标签为0,即作为假样本;然后,对步骤2生成的n组归一化后的电压数据样本的标签为1,即作为真样本;训练生成对抗网络中的判别器D,判别器D为有监督的二分类模型;输入节点数为(M+N),输出节点数为1,隐藏层节点数为H2,H2为对...

【专利技术属性】
技术研发人员:黄继业陈德平杨宇翔高明煜谢尚港陆燕怡
申请(专利权)人:杭州电子科技大学
类型:发明
国别省市:浙江,33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1