一种用于相变存储器的Si/Sb类超晶格相变薄膜材料的制备方法技术

技术编号:18765939 阅读:106 留言:0更新日期:2018-08-25 11:49
本发明专利技术公开了一种用于相变存储器的Si/Sb类超晶格相变薄膜材料的制备方法,所制备的Si/Sb类超晶格相变薄膜材料为多层膜结构,多层膜结构中Si薄膜层和Sb薄膜层交替排列。本发明专利技术的Si/Sb类超晶格相变薄膜材料的RESET电压比相同电压脉冲下的Ge2Sb2Te5薄膜的RESET电压低47%以上,说明本发明专利技术的Si/Sb类超晶格相变薄膜材料具有更低的功耗。

【技术实现步骤摘要】
一种用于相变存储器的Si/Sb类超晶格相变薄膜材料的制备方法本申请是申请号为201510889657.2,申请日为2015年12月07日,专利技术创造名称为“用于相变存储器的Si/Sb类超晶格相变薄膜材料及其制备方法”的专利技术专利申请的分案申请。
本专利技术涉及微电子
的相变薄膜材料,具体涉及一种用于高速、低功耗相变存储器的Si/Sb类超晶格相变薄膜材料的制备方法。
技术介绍
目前,具有应用潜力的新型存储器主要有磁性存储器(MRAM)、铁电存储器(FeRAM)、阻变存储器(RRAM)和相变存储器(PCRAM)。其中相变存储器作为非易失性存储器,具有高速、高密度、高数据保持力、高循环寿命(>1013次)、低功耗、制备工艺简单以及与现有集成电路工艺相兼容等诸多优点,尤其是可微缩性好(可以微缩至5nm技术节点),有可能取代目前市场上的动态存储器(DRAM)、闪存(Flash)及机械硬盘(HDD)等,成为下一代的通用存储器。PCRAM的原理是利用硫系化合物在晶态和非晶态巨大的电阻差异来实现数据存储,当相变材料在非晶态时具有较高电阻,在晶态时具有较低电阻,两态之间的电阻差异达到2个数量级以上。通过电流诱导的焦耳热,可以实现相变材料在两个电阻态之间的快速转变。PCRAM以其巨大的优势,被国际半导体工业协会认为是最有可能取代目前的闪存而成为未来存储器主流产品和最先成为商用产品的下一代非易失性存储器。相变存储材料是PCRAM的核心,其性能直接决定PCRAM的各项技术性能。相变存储器的操作速度主要受限于薄膜的晶化过程,因此加快薄膜的相变速度才能提高相变存储器的操作速度。目前应用最广泛的相变存储材料是Ge2Sb2Te5(GST),它具有较好的综合性能;但其较低的结晶温度和较差的热稳定性使得GST的数据保持力不尽人意,存在很多有待改善和提高的地方(Loke,D.等,Science,2012,336(6088):1566)。比如,Ge2Sb2Te5薄膜的晶化温度只有160oC左右,仅能在85oC的环境温度下将数据保持10年,其次,Ge2Sb2Te5薄膜以形核为主的晶化机制使得其相变速度较慢,无法满足未来高速、大数据时代的信息存储要求。近年来,类超晶格相变材料受到持续关注,与传统的单层Ge2Sb2Te5相变材料相比,类超晶格结构具有较低的热导率,可以减少加热过程中的热量散失,从而提高加热效率。
技术实现思路
本专利技术所要解决的技术问题是提供一种用于高速、低功耗相变存储器的Si/Sb类超晶格相变薄膜材料的制备方法。实现本专利技术目的的技术方案是一种用于相变存储器的Si/Sb类超晶格相变薄膜材料,Si/Sb类超晶格相变薄膜材料为多层膜结构,多层膜结构中Si薄膜层和Sb薄膜层交替排列。Si/Sb类超晶格相变薄膜材料的膜结构用通式[Si(a)/Sb(b)]x表示,其中a为单层Si薄膜层的厚度,18nm≤a≤22nm;b为单层Sb薄膜层的厚度,1nm≤b≤2nm;x为Si薄膜层和Sb薄膜层的交替周期数,x为正整数。作为优选的,40nm≤(a+b)*x≤65nm。一种如上所述的用于相变存储器的Si/Sb类超晶格相变薄膜材料的制备方法,包括以下步骤:①基片的准备,将基片洗净烘干待用。②磁控溅射的准备,将步骤①洗净的待溅射的基片放置在基托上,将Si和Sb作为溅射靶材分别安装在磁控射频溅射靶中,并将磁控溅射镀膜系统的溅射腔室进行抽真空,使用高纯氩气作为溅射气体。③磁控溅射制备[Si(a)/Sb(b)]x多层复合薄膜,首先清洁Si靶材和Sb靶材表面,清洁完毕后,将待溅射的SiO2/Si(100)基片旋转到Si靶位;打开Si靶位上的射频电源,Si层溅射速率为15s/nm,溅射时间270s~330s,溅射结束后得到Si薄膜层;Si薄膜层溅射完成后,关闭Si靶位上施加的直流电源,将已经溅射了Si薄膜层的基片旋转到Sb靶位,开启Sb靶位上的射频电源,Sb层溅射速率为3s/nm,溅射时间3s~6s,溅射结束后得到Sb薄膜层;重复上述溅射Si层和Sb层的操作至需要的薄膜厚度,溅射结束得到Si/Sb类超晶格相变薄膜材料。上述步骤③中Si层溅射速率为15s/nm,Sb层溅射速率为3s/nm。上述步骤②中高纯氩气的体积百分比≥99.999%,Ar气流量为25~35SCCM,氩气溅射气压为0.15Pa~0.4Pa。本专利技术具有积极的效果:(1)本专利技术的Si/Sb类超晶格相变薄膜材料利用类超晶格结构中多层界面的夹持效应,减小晶粒尺寸,从而缩短结晶时间,抑制晶化,在提高热稳定性的同时加快相变速度。(2)本专利技术的Si/Sb类超晶格相变薄膜材料在相变过程中的体积改变较小,可以保证相变层和电极材料的有效良好接触,从而提高PCRAM器件的可靠性。(3)本专利技术的Si/Sb类超晶格相变薄膜材料通过磁控溅射交替沉积Ge层和Sb层,在纳米量级复合而成。制备时,通过控制溅射时间和溅射速率来控制各Ge层和Sb层的厚度,各层的厚度控制精确。(4)本专利技术的Si/Sb类超晶格相变薄膜材料的RESET电压比相同电压脉冲下的Ge2Sb2Te5薄膜的RESET电压低47%以上,说明本专利技术的Si/Sb类超晶格相变薄膜材料具有更低的功耗。附图说明图1为本专利技术实施例1至实施例6的Si/Sb类超晶格相变薄膜材料和对比例1的原位电阻与温度的关系曲线,图中横坐标的Temperature为温度,纵坐标的Resistance为电阻;图2为将本专利技术实施例2的Si/Sb类超晶格相变薄膜材料及传统Ge2Sb2Te5薄膜材料制成PCRAM器件单元后,测试的在电压脉冲作用下电阻随电压的变化关系;图中横坐标的Voltage为电压,纵坐标的Resistance为电阻。具体实施方式(实施例1)本实施例的用于相变存储器的Si/Sb类超晶格相变薄膜材料为多层膜结构,厚度为40~65nm;多层膜结构中Si薄膜层和Sb薄膜层交替排列,即在Si/Sb类超晶格相变薄膜材料中,按照Si薄膜层-Sb薄膜层-Si薄膜层-Sb薄膜层…的顺序重复交替排列。将一层Si薄膜层和一层Sb薄膜层作为一个交替周期,后一个交替周期的Si薄膜层沉积在前一个交替周期的Sb薄膜层上方。其中单层Si薄膜层的厚度为1~22nm,单层Sb薄膜层的厚度为1~5nm。Si薄膜层中Si含量99.999%以上,Sb薄膜层中Sb含量99.999%以上。上述Si/Sb类超晶格相变薄膜材料的膜结构用通式[Si(a)/Sb(b)]x表示,其中a为单层Si薄膜层的厚度,1nm≤a≤22nm;b为单层Sb薄膜层的厚度,1nm≤b≤5nm;x为Si薄膜层和Sb薄膜层的交替周期数,或者说一层Si薄膜层和一层Sb薄膜层为一组,薄膜材料由x组单层的Si薄膜层和Sb薄膜层组成;x为正整数,40nm≤(a+b)*x≤65nm。本实施例的Si/Sb类超晶格相变薄膜材料的膜结构为[Si(1nm)/Sb(5nm)]8,即每一层Si薄膜层的厚度为1nm,每一层Sb薄膜层的厚度为5nm,Si薄膜层和Sb薄膜层的交替周期数为8,Si/Sb类超晶格相变薄膜材料的厚度为48nm。本实施例的Si/Sb类超晶格相变薄膜材料采用磁控溅射法制得;具体制备方法包括以下步骤:①基片的准备。选取尺寸为5mm×5mm的SiO2/本文档来自技高网
...

【技术保护点】
1.一种用于相变存储器的Si/Sb类超晶格相变薄膜材料的制备方法,其特征在于:所述Si/Sb类超晶格相变薄膜材料为多层膜结构,多层膜结构中Si薄膜层和Sb薄膜层交替排列;Si/Sb类超晶格相变薄膜材料的膜结构用通式[Si (a)/Sb(b)]x表示,其中a为单层Si薄膜层的厚度,18nm≤a≤22nm;b为单层Sb薄膜层的厚度,1nm≤b≤2nm;x为Si薄膜层和Sb薄膜层的交替周期数,x为正整数,40nm≤(a+b)*x≤65nm;制备方法包括以下步骤:①基片的准备,将基片洗净烘干待用;②磁控溅射的准备,将步骤①洗净的待溅射的基片放置在基托上,将Si和Sb作为溅射靶材分别安装在磁控射频溅射靶中,并将磁控溅射镀膜系统的溅射腔室进行抽真空,使用高纯氩气作为溅射气体;③磁控溅射制备[Si (a)/Sb(b)]x多层复合薄膜,首先清洁Si靶材和Sb靶材表面,清洁完毕后,将待溅射的SiO2/Si(100)基片旋转到Si靶位;打开Si靶位上的射频电源,Si层溅射速率为15s/nm,溅射时间270s~330s,溅射结束后得到Si薄膜层;Si薄膜层溅射完成后,关闭Si靶位上施加的直流电源,将已经溅射了Si薄膜层的基片旋转到Sb靶位,开启Sb靶位上的射频电源,Sb层溅射速率为3s/nm,溅射时间3s~6s,溅射结束后得到Sb薄膜层;重复上述溅射Si层和Sb层的操作至需要的薄膜厚度,溅射结束得到Si/Sb类超晶格相变薄膜材料。...

【技术特征摘要】
1.一种用于相变存储器的Si/Sb类超晶格相变薄膜材料的制备方法,其特征在于:所述Si/Sb类超晶格相变薄膜材料为多层膜结构,多层膜结构中Si薄膜层和Sb薄膜层交替排列;Si/Sb类超晶格相变薄膜材料的膜结构用通式[Si(a)/Sb(b)]x表示,其中a为单层Si薄膜层的厚度,18nm≤a≤22nm;b为单层Sb薄膜层的厚度,1nm≤b≤2nm;x为Si薄膜层和Sb薄膜层的交替周期数,x为正整数,40nm≤(a+b)*x≤65nm;制备方法包括以下步骤:①基片的准备,将基片洗净烘干待用;②磁控溅射的准备,将步骤①洗净的待溅射的基片放置在基托上,将Si和Sb作为溅射靶材分别安装在磁控射频溅射靶中,并将磁控溅射镀膜系统的溅射腔室进行抽真空,使用高纯氩气作为溅射气体;③磁控溅射制备[Si(a)/Sb(b)]x多层复...

【专利技术属性】
技术研发人员:朱小芹胡益丰邹华袁丽吴卫华郑龙张建豪吴世臣眭永兴
申请(专利权)人:江苏理工学院
类型:发明
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1