用于车载三维成像固态激光雷达系统技术方案

技术编号:18111025 阅读:56 留言:0更新日期:2018-06-03 06:33
用于车载三维成像固态激光雷达系统,涉及车载激光雷达领域,解决现有传统机械扫描式激光雷达扫描速度慢、体积大、接收信噪比低以及安全系数差的技术问题,包括激光器、多个TR组件及中央处理单元;激光器包括光隔离器、预放大器、分束器、主放大器阵列和扩束准直光路;每个TR组件包括发射系统和回波接收系统;发射系统包括单向玻璃阵列和液晶偏振光栅阵列;回波接收系统包括滤光片阵列、汇聚透镜阵列光电探测器阵列和多个读出电路;本实用新型专利技术中雷达内部无机械旋转部件,能够大幅度缩小激光雷达体积。单个TR组件中无处理器结构,所有TR组件统一接受激光雷达中央处理单元的控制,便于集成。多TR组件排布方式,实现了水平360°、竖直20°的视场覆盖。

【技术实现步骤摘要】
用于车载三维成像固态激光雷达系统
本技术涉及车载激光雷达领域,具体涉及一种用于车载三维成像固态激光雷达系统。
技术介绍
随着人们对汽车驾驶要求的不断提高和社会技术的发展,无人驾驶成为汽车产业的一大变革方向。作为无人驾驶系统的核心关键技术,车载激光雷达通过向目标发射探测信号(激光束),将接收到的从目标反射回来的信号(目标回波)与发射信号进行比较,经过适当处理后,获取车辆周围环境道路、车辆位置和障碍物等信息,以实现无人驾驶系统智能自主地控制车辆的转向和速度、可靠地在道路上行驶,并到达预定目的地。传统的机械式激光雷达,采用多束激光并排绕轴旋转360度,每束激光扫描一个平面。64线(即64束激光)机械式激光雷达已能够满足自动驾驶的需求,但存在结构笨重、体积较大、成本高、容易造成机械磨损、扫描速度慢、成像分辨率不高、接收信噪比较低、安全系数差等缺点。考虑到车载安装的便利及成本问题,传统的机械式激光雷达无法实现大规模商用,不能被市场所接受。随着无人驾驶行业的飞速发展,未来激光雷达将有着巨大的需求,而且对激光雷达的扫描精度、扫描速度、结构体积及安全性等都有着更高的要求。现有的技术无法满足未来激光雷达发展趋势。
技术实现思路
本技术为解决现有传统机械扫描式激光雷达扫描速度慢、体积大、接收信噪比低以及安全系数差的技术问题,提供一种用于车载三维成像固态激光雷达系统。用于车载三维成像固态激光雷达系统,包括激光器、多个TR组件及中央处理单元;所述激光器包括光隔离器、预放大器、分束器、主放大器阵列和扩束准直光路;每个TR组件包括发射系统和回波接收系统;所述发射系统包括单向玻璃阵列和液晶偏振光栅阵列;回波接收系统包括滤光片阵列、汇聚透镜阵列光电探测器阵列和多个读出电路;所述中央处理单元发送控制信号到激光器,发送驱动信号到液晶偏振光栅控制器;所述激光器输出激光经过光隔离器进入预放大器,经过预放后的激光由分束器分成多路,多路激光分别经主放大器阵列放大后由扩束准直光路进行扩束和光线的准直输出,输出的多路激光进入发射系统;多路激光经所述发射系统内的单向玻璃阵列后进入液晶偏振光栅阵列,所述液晶偏振光栅控制器根据接收的驱动信号控制液晶偏振光栅阵列偏转使激光偏转对准目标进行电光扫描,激光经过目标反射后,多路激光经液晶偏振光栅阵列偏转后由单向玻璃阵列反射,依次经滤光片阵列和汇聚透镜阵列后,将多路激光投射到光电探测器阵列的感光面上,光电探测器阵列将接收的光信号转换成电信号,经对应的读出电路计算激光发射时间和回波时间之差,计算液晶偏振光栅阵列对应方向的目标距离,并传递给中央处理单元;所述中央处理单元通过读出电路计算获得目标距离信息以及液晶偏振光栅阵列的偏转角度信息进行图像处理和三维重构运算,并将运算结果传递给汽车自动驾驶系统。本技术的有益效果:一、本技术采用液晶偏振光栅作为光束偏转器件,减小了系统的体积,同时实现了快速扫描,提高了图像的分辨率。本技术设计的液晶偏振光栅控制器,实现了高精度、高灵活度、易集成的液晶偏振光栅的驱动和控制电压波形。二、本技术设计了线性APD阵列器件作为光电探测器。由于雷达内部无机械旋转部件,能够大幅度缩小激光雷达体积。采用线阵扇面扫描方式,减小了系统的体积,同时实现了大视场扫描。本技术所述的单个TR组件中无处理器结构,所有TR组件统一接受激光雷达中央处理单元的控制,便于集成。多TR组件排布方式,实现了水平360°、竖直20°的视场覆盖。三、本技术采用多核DSP作为中央处理单元,实现了数据的并行计算,提高了三维图像的成像速度。四、本技术所述的固态激光雷达能够直接将发射、接收、处理单元集成到一个芯片上,解决了传统机械扫描式激光雷达扫描速度慢、体积大、安全性差、接收信噪比低以及安全系数差的技术问题。附图说明图1为本技术所述的用于车载三维成像固态激光雷达系统的整体结构图;图2为本技术所述的用于车载三维成像固态激光雷达系统中单路激光结构图;图3为本技术所述的用于车载三维成像固态激光雷达系统单路光束成像原理图;图4为本技术所述的用于车载三维成像固态激光雷达系统的原理图;图5为本技术所述的用于车载三维成像固态激光雷达系统中TR组件分布安装光束覆盖示意图;图6本技术所述的用于车载三维成像固态激光雷达系统中相邻光束间盲区示意图。具体实施方式具体实施方式一、结合图1至图6说明本实施方式,用于车载三维成像固态激光雷达系统,包括激光器1、多个TR组件2及中央处理单元3,所述激光器1包括光隔离器1-1、预放大器1-2、分束器1-3、主放大器阵列1-4和扩束准直光路1-5;每个TR组件包括发射系统4和回波接收系统5;所述发射系统4包括单向玻璃阵列4-1和液晶偏振光栅阵列4-2;回波接收系统5包括滤光片阵列5-1、汇聚透镜阵列5-2光电探测器阵列5-3和多个读出电路5-4;中央处理器(DSPTMS320C6678)同时发送一组发射控制信号U(U1,U2…Un)到激光器1,一组光束偏转信号V(V1,V2…Vn)到液晶偏振光栅控制器。激光器1以光纤耦合半导体激光器作为种子源,种子源的输出经过光隔离器1-1进入预放大器1-2,经过预放大后的激光被分束器1-3分成多路,多路激光经主放大器阵列1-4放大后由扩束准直光路进行激光的扩束和光线的准直输出,输出的多路激光进入发射系统;各光纤传递出射激光束进入发射系统4,经过单向玻璃阵列4-1,将扩束准直后的光束传递给液晶偏振光栅阵列4-2,液晶偏振光栅阵列4-2接收到中央处理单元3发送的信号进行电光扫描,多路激光经过目标反射后,经过液晶偏振光栅阵列4-2、单向玻璃阵列4-1进入回波接收系统,经过滤光片阵列5-1、汇聚透镜阵列5-2后,将光束投射到APD阵列的感光面上,APD阵列通过对应的读出电路计算激光发射时间和回波时间之差,通过飞行时间(TOF)测距法即可获取目标的距离值,并传递给中央处理单元3;中央处理单元3进行图像处理和三维重构运算,并将运算结果传递给汽车自动驾驶系统。本实施方式中所述的液晶偏振光栅控制器属于液晶光学相控阵的控制中心,接受外部命令,实现液晶偏振光栅的驱动和控制电压波形。为了实现高精度、高灵活度、易集成的液晶偏振光栅控制器,采用C8051F系列单片机为核心,设计以单片机形成控制电压波形、以数字电位器调节控制电压、光耦隔离的方式实现液晶偏振光栅控制器。结合图2说明本实施方式,本实施方式中,激光种子源是一个直接调制的光纤耦合半导体激光器,种子源的输出经过光隔离器1-1进入预放大器1-2,预放大器采用镱掺杂光纤作为增益介质,采用光纤耦合半导体激光器作为泵浦源,泵浦源的输出通过光纤合束器耦合进入增益光纤,输出端采用光隔离器阻挡反方向回光进入放大器。预放后激光经过光纤分束器分为多束,分别进入各主放大器,主放大器的泵浦采用同带泵浦方式,泵浦源选择1018nm光纤激光器作为泵浦源,选择该泵浦源的优点是可以减小增益光纤长度,有效抑制受激拉曼散射、提高主放大器效率、减小主放大器产生的热量。在两级光纤放大器中间插入声光调制器,其作用是滤除前一级光纤放大器中的放大自发辐射(AmplifiedSpontaneousEmission,ASE),并对脉冲本文档来自技高网...
用于车载三维成像固态激光雷达系统

【技术保护点】
用于车载三维成像固态激光雷达系统,包括激光器(1)、多个TR组件(2)及中央处理单元(3),其特征是;所述激光器(1)包括光隔离器(1‑1)、预放大器(1‑2)、分束器(1‑3)、主放大器阵列(1‑4)和扩束准直光路(1‑5);每个TR组件包括发射系统(4)和回波接收系统(5);所述发射系统(4)包括单向玻璃阵列(4‑1)和液晶偏振光栅阵列(4‑2);回波接收系统(5)包括滤光片阵列(5‑1)、汇聚透镜阵列(5‑2)光电探测器阵列(5‑3)和多个读出电路(5‑4);所述中央处理单元(3)发送控制信号到激光器(1),发送驱动信号到液晶偏振光栅控制器;所述激光器(1)输出激光经过光隔离器(1‑1)进入预放大器(1‑2),经过预放后的激光由分束器(1‑3)分成多路,多路激光分别经主放大器阵列(1‑4)放大后由扩束准直光路(1‑5)进行扩束和光线的准直输出,输出的多路激光进入发射系统;多路激光经所述发射系统内的单向玻璃阵列(4‑1)后进入液晶偏振光栅阵列(4‑2),所述液晶偏振光栅控制器根据接收的驱动信号控制液晶偏振光栅阵列(4‑2)偏转,多路激光对目标进行电光扫描,激光经过目标反射后,多路激光经液晶偏振光栅阵列(4‑2)偏转后由单向玻璃阵列(4‑1)反射,依次经滤光片阵列(5‑1)和汇聚透镜阵列(5‑2)后,将多路激光投射到光电探测器阵列(5‑3)的感光面上,光电探测器阵列将接收的光信号转换成电信号,电信号经读出电路(5‑4)、液晶偏振光栅阵列(4‑2)后由中央处理单元(3)接收。...

【技术特征摘要】
1.用于车载三维成像固态激光雷达系统,包括激光器(1)、多个TR组件(2)及中央处理单元(3),其特征是;所述激光器(1)包括光隔离器(1-1)、预放大器(1-2)、分束器(1-3)、主放大器阵列(1-4)和扩束准直光路(1-5);每个TR组件包括发射系统(4)和回波接收系统(5);所述发射系统(4)包括单向玻璃阵列(4-1)和液晶偏振光栅阵列(4-2);回波接收系统(5)包括滤光片阵列(5-1)、汇聚透镜阵列(5-2)光电探测器阵列(5-3)和多个读出电路(5-4);所述中央处理单元(3)发送控制信号到激光器(1),发送驱动信号到液晶偏振光栅控制器;所述激光器(1)输出激光经过光隔离器(1-1)进入预放大器(1-2),经过预放后的激光由分束器(1-3)分成多路,多路激光分别经主放大器阵列(1-4)放大后由扩束准直光路(1-5)进行扩束和光线的准直输出,输出的多路激光进入发射系统;多路激光经所述发射系统内的单向玻璃阵列(4-1)后进入液晶偏振光栅阵列(4-2),所述液晶偏振光栅控制器根据接收的驱动信号控制液晶偏振光栅阵列(4-2)偏转,多路激光对目标进行电光扫描,激光经过目...

【专利技术属性】
技术研发人员:李雪梅王春阳史红伟牛启凤刘雪莲辛瑞昊
申请(专利权)人:长春理工大学
类型:新型
国别省市:吉林,22

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1