吸氢合金及其制造方法技术

技术编号:1793545 阅读:162 留言:0更新日期:2012-04-11 18:40
本发明专利技术提供在压力0.001~10MPa下的有效氢量非常高、富有广泛使用性的吸氢合金以及容易地获得该合金的制造方法。上述吸氢合金以组成式Cr#-[a]Ti#-[b]V#-[c]Fe#-[d]M#-[e]X#-[f](M:Al等;X:La等。30≤a≤70、20≤b≤50、5≤c≤20、0≤d≤10、0≤e≤0.1、0≤f≤0.1,a+b+c+d+e+f=100)表示,含O#-[2]为0.005~0.150重量%、并且在温度0~100℃、压力0.001~10MPa下具有2.2%以上的氢吸藏.释放能力,主要具有BCC,上述制造方法包括合金原料的熔化工序(a)、向合金熔融液中喷吹氩的工序(b1)等的脱氧工序(b)、和铸造工序(c)。(*该技术在2021年保护过期,可自由使用*)

【技术实现步骤摘要】

本专利技术涉及为了在从室温到100℃的温度范围进行氢的吸藏·释放的,尤其涉及对车载式或定置式吸藏氢的用途有用的。近年,吸氢合金被用于二次电池的负极,产量飞跃地提高。又,汽车排气的规章从2004年开始被强化,因此主要的汽车制造厂商正在进行使用二次电池的电动汽车的开发、或使用通过甲醇改质获取氢并使其氢与空气中的氧反应获取电能的固体高分子型燃料电池的电动汽车的开发。这些电动汽车为了应对初期启动以及负荷波动,需要装载供给氢的氢气瓶或吸氢合金。现在,装载汽油发动机和电机的混合型车在市场上销售。该混合型车利用AB5型吸氢合金,但是为了使一次充电的行走距离更长并使车体轻量化,强烈要求具有更多氢吸藏量的合金的改进与开发。现在广泛使用的AB5型吸氢合金的氢吸藏量为合金总重量的1.4%左右。作为大于该AB5型吸氢合金的氢吸藏量的吸氢合金,从前就已经熟知Fe-Ti系合金。Fe-Ti系合金的价格比较便宜,平台压力优异,在室温下为0.4~0.6MPa,但是具有活化困难这一缺点。然而,该合金的氢吸藏量从相对于合金总重量为较高的1.7%这一点看,是很有希望的。作为氢吸藏量多的合金,熟知的有MgNi2合金,但是其作用温度高达300℃,对一般家庭及家电的使用而言温度过高,而不适宜。最近,作为可在室温到100℃的温度区使用的吸氢合金,具有体心立方结构(以下称为BCC)的吸氢合金受到关注。BCC在四面体以及八面体的中心有空隙,在该空隙吸藏氢。而且,有报告指出,BCC合金的理论氢吸藏量相对于合金总重量为4.0%。作为BCC的吸氢合金,在特开平10-110225号公报公开了具有TixCryVz(x+y+z=100)的组成、消除拉弗斯相、出现BCC相并且处于发生亚稳定分解的范围、组织由通过亚稳定分解形成的规则的周期结构构成、表观晶格常数在0.2950nm以上、0.3060nm以下的吸氢合金;在特开平10-310833号公报公开了Ti-V-Cr系的吸氢合金;在特开平10-121180号公报公开了作为添加Mo或W的具有BCC的合金Ti(100-a-b)CraXb(40<a<70、0<b<20)的合金;在特开平11-106859号公报公开了在Ti-V-Cr系合金中添加Mn、Co、Ni、Zr、Nb、Hf、Ta、Al中1种或2种以上的第4元素、其比例以原子%计在14<Ti<60、14<Cr<60、9<V<60、0<第4元素<8的范围合计为100%、并且通过使金属组织成为BCC而改善平台的平坦性的合金。虽然这些公报提出的合金具有BCC,但是这些合金的氢吸藏量只不过都不足2.5%。又,对于具有BCC的吸氢合金,作为含有Fe的合金,在特开平9-49034号公报中公开了作为起始材料使用Fe-V合金由至少含有V和Fe的3种以上元素构成的具有BCC的吸氢合金的制造方法。但是,由该法得到的合金,氢吸藏量也没有达到2.5%。另一方面,专利第2743123号公开了Ti-Cr-V-Fe的吸氢合金,但是该合金的氢吸藏量也在2.5%以下。又曾经报道,吸氢合金的氢吸藏量受合金中氧量的影响(J.AlloysComp.265(1998),p257~263)。在MH利用开发研究会·特别公开研讨会’99(1999.12.17)的论文集中报道以V-14原子%Ni-1原子%Nb的铝热法的合金粗材为基础,在减压氩气氛下用电弧熔炼法合金化其它构成元素以及5原子%的混合稀土(以下称“Mm”)的结果,能够使氧浓度从1%减低到0.06%,由此显著提高氢吸藏量。但是,该合金系的氢吸藏量也不足2.0%。但是,现有的吸氢合金的性能,是根据在某一温度下反复吸藏·释放时的最大氢吸藏量、或者基于真空原点法的氢吸藏量进行评估。可是,实际上将吸氢合金用于燃料电池的场合,最大氢吸藏量并不重要,压力范围在0.001~10MPa时,参与吸藏·释放的氢量即可能利用的氢量(以下称“有效氢量”)变得重要。以前,例如含有V的BCC合金的最大氢吸藏量或者第1循环的氢吸藏量的测定,在作为BCC合金的特征的两段平台中实际上不能利用的第1段低压平台的氢量也进行测定,因此成为远离上述有效氢量的值。又,在以前的真空原点法的测定中,也测定不实用的低压力范围的氢,因此成为大于上述有效氢量的值。有报道指出,总而言之,到目前为止开发的BCC型吸氢合金的氢吸藏量超过2.5%,但它们都是以最大氢吸藏量的评估,并非是有效氢量的评估。因此,将以前提出的V量在20原子%以下的合金的氢吸藏量以有效氢量测定的场合,在压力范围0.001~10MPa、使用温度在室温至100℃间的条件下尚不知超过2.2%的合金。BCC的吸氢合金,为了在使用温度区成为BCC,其制造需要从高温的BCC区急冷。因此,从吸氢合金的制造性这一点,状态图上高温的BCC区宽的合金是有利的。为了扩大这样高温的BCC区,作为合金组成可以利用V,其代表例为Ti-Cr-V系合金,BCC的存在范围与V量成比例扩大。但是,以V作为主要成分使用的场合,存在2个问题。一是金属V的价格高、当V含量多时吸氢合金价格变得太贵,失去广泛使用性。再一个问题是V的熔点高达1910℃。为了熔化V而使处在高温时Ti-Cr-V系合金的主要元素Ti还原耐火材料,使熔炼炉等的耐火材料的使用寿命缩短,同时合金中的氧量增高。因此,在Ti-Cr-V系合金的制造上,减少高价V的添加量与降低熔炼温度成为重要的课题。又,可以认为,作为吸氢合金的原料,替代金属V使用便宜的钒铁合金(Fe-V),但是Fe-V的氧含量是非常高的,达0.5~1.5%,因此所得到的吸氢合金的氧量变高,储氢特性下降。本专利技术的另一个目的在于提供在低于V的熔化温度的温度下能够容易地得到压力在0.001~10MPa时的有效氢量非常高、富有广泛使用性的吸氢合金的吸氢合金的制造方法。根据本专利技术,提供主要晶体结构是BCC,以组成式CraTibVcFedMeXf表示、含O2在0.005~0.150重量%、并且在温度0~100℃、压力0.001~10MPa具有占合金总重量2.2%以上的氢吸藏·释放能力的吸氢合金。(在组成式中,M表示从Al、Mo、W中选择的1种或2种以上;X表示从La、Mm、Ca以及Mg中选择的1种或2种以上;a、b、c、d、e以及f表示原子%,30≤a≤70、20≤b≤50、5≤c≤20、0<d≤10、0≤e≤10、0≤f≤10,a+b+c+d+e+f=100)。又,根据本专利技术提供上述吸氢合金的制造方法,该吸氢合金的制造方法包括熔化上述吸氢合金的合金原料的熔化工序(a);由向合金熔融液中喷吹氩气的脱氧工序(b1)、将熔化的合金熔融液保持在0.1Pa以下的真空度的脱氧工序(b2)、以及使合金熔融液中含有从La、Mm、Ca及Mg中选择的1种或2种以上并加以保持的脱氧工序(b3)构成的至少其中之一的脱氧工序(b);使合金熔融液凝固的铸造工序(c),根据需要包含将使之凝固的合金在1150~1450℃的温度区保持1~180分钟后以100℃/秒以上的冷却速度冷却到400℃以下的工序(d)等。专利技术的优选实施形态以下更详细地说明本专利技术。本专利技术的吸氢合金,主要的晶体结构是BCC。在此,所谓“主要”意味着用X射线衍射装置不能明了地识别BCC以外的第2相的程度。本专利技术的吸氢合金本文档来自技高网...

【技术保护点】
一种吸氢合金,该合金的主要晶体结构是体心立方结构,以组成式Cr↓[a]Ti↓[b]V↓[c]Fe↓[d]M↓[e]X↓[f]表示,含O↓[2]在0.005~0.150重量%,且在温度0~100℃、压力0.001~10MPa下具有相对于合金总重量为2.2%以上的氢吸藏.释放能力,组成式中,M表示从Al、Mo及W中选择的1种或2种以上;X表示从La、混合稀土(Mischmetal)(Mm)、Ca及Mg中选择的1种或2种以上;a、b、c、d、e及f是原子%,30≤a≤70、20≤b≤50、5≤c≤20、0<d≤10、0≤e≤10、0≤f≤10,a+b+c+d+e+f=100。

【技术特征摘要】
...

【专利技术属性】
技术研发人员:冈裕
申请(专利权)人:株式会社三德
类型:发明
国别省市:JP[日本]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术
  • 暂无相关专利