一种3d打印制备锰铋铝永磁材料的制备方法技术

技术编号:17478556 阅读:25 留言:0更新日期:2018-03-17 00:17
本发明专利技术公开了一种3d打印制备锰铋铝永磁材料的制备方法,该方法制得的永磁材料具有优异、稳定的永磁性能,并且可以通过简单易行的制备方法获得;本发明专利技术将化学固化和光固化相结合,缩短固化时间,提高磁性材料的固化速度,从而提高制件的成形率,提升磁材的制备效率。

Preparation of a 3D printing method for the preparation of Mn, bismuth and aluminum permanent magnetic materials

【技术实现步骤摘要】
一种3d打印制备锰铋铝永磁材料的制备方法
本专利技术涉及磁性材料制造领域,具体涉及一种3d打印制备锰铋铝永磁材料的制备方法。
技术介绍
稀土永磁材料是指稀土金属和过渡族金属形成的合金经一定的工艺制成的永磁材料。稀土永磁材料是现在已知的综合性能最高的一种永磁材料,它比九十世纪使用的磁钢的磁性能高100多倍,比铁氧体、铝镍钴性能优越得多,比昂贵的铂钴合金的磁性能还高一倍。由于稀土永磁材料的使用,不仅促进了永磁器件向小型化发展,提高了产品的性能,而且促使某些特殊器件的产生,所以稀土永磁材料一出现,立即引起极大重视,发展极为迅速。稀土永磁材料已在机械、电子、仪表和医疗等领域获得了广泛应用。低温相(LTP)MnBi合金具有高的磁各向异性(11.6×106erg/cc)、居里温度约为633K,在150K~550K的温度范围内具有正的矫顽力温度系数,因此MnBi合金被认为是具有广泛应用前景的高温永磁材料。MnBi的铁磁性能主要来源于其低温相。MnBi合金在常温下可以形成多个紧密联系的相,如低温相、高温相还有新相等等,这在很大程度上制约了MnBi合金的发展,给制备高纯度低温相含量的MnBi合金带来了极大的困难。3D打印用于磁性材料的成型中,属于新的技术,在3D凝胶打印磁性材料制品过程中采用化学方法对其进行边打印边固化,但由于化学固化需要一定的时间,因此对打印制品的尺寸有一定限制,若打印制品尺寸较大制件,由于打印过程中制品未完全固化,继续在未完全固化的打印层上面堆积材料从而造成塌陷和变形等缺陷,使得打印制品的成形率低。
技术实现思路
本专利技术提供一种3d打印制备锰铋铝永磁材料的制备方法,该方法制得的永磁材料具有优异、稳定的永磁性能,并且可以通过简单易行的制备方法获得;本专利技术将化学固化和光固化相结合,缩短固化时间,提高磁性材料的固化速度,从而提高制件的成形率,提升磁材的制备效率。为了实现上述目的,实现上述目的,本专利技术提供了一种3d打印制备锰铋铝永磁材料的制备方法,该永磁材料主体的成分化学式为Mn100-x-yBixAly,其中x=42-45,y=1-3;该方法包括如下步骤:(1)按照上述成分化学式称取各元素进行配料;(2)将配料置于熔炼炉中,炉内抽真空至少达到5×10-3Pa;然后,通氦气至炉内压力为50-80kPa;升温至1300-1450℃熔化,搅拌、精炼后浇铸到水冷铜模中待用;(3)将得到的合金铸锭破碎,装入真空甩带机中的石英管内,石英管底端喷嘴直径为0.5-0.8mm,对真空甩带机的腔体抽真空后,向腔体内充入保护气体;接通真空甩带机电源,加热熔化石英管内的合金,同时,控制石英管底端喷嘴至铜辊表面距离为1-5mm,调整真空甩带机铜辊转速,使铜辊转速为55-65m/s,将母合金熔体喷射到转动的铜辊上,得到永磁材料薄带;将薄带破碎球磨得到纳米级的硬磁颗粒;(4)首先将2-甲基丙烯酰氯和光敏树脂以体积比1:(3-6)混合,搅拌50-80min使得两者混合均匀得到混合液,再加入上述硬磁颗粒,混合液和硬磁颗粒的体积比为1:(1.5-3),并搅拌30-60min混合均匀;(5)再加入1-3wt%的硅酸盐类分散剂,0.2-0.5wt%的引发剂过硫酸钾,继续搅拌80-100min使得料浆完全混合均匀,其中硬磁颗粒占料浆体积分数的55%-65vol%,料浆粘度为500-800Pa.s;(6)将所得到的料浆装入凝胶打印机的针筒中,打印速度为15-20mm/s,每完成一层打印,喷雾装置将向打印表面喷洒一层雾状的催化剂,并且整个打印过程进行紫外灯照射;(7)将打印所得到的坯体在70-85℃下干燥20-30h,将经过干燥的坯体在真空中900-1050℃进行烧结,烧结时间为10-20h,得到永磁材料。本专利技术制备的铁基软磁复合磁芯具备以下优点:(1)该方法制得的永磁材料具有优异、稳定的永磁性能,并且可以通过简单易行的制备方法获得;(2)本专利技术将化学固化和光固化相结合,缩短固化时间,提高磁性材料的固化速度,从而提高制件的成形率,提升磁材的制备效率。具体实施方式实施例一本实施例永磁材料主体的成分化学式为Mn57Bi42Al1。按照上述成分化学式称取各元素进行配料;将配料置于熔炼炉中,炉内抽真空至少达到5×10-3Pa;然后,通氦气至炉内压力为50kPa;升温至1300℃熔化,搅拌、精炼后浇铸到水冷铜模中待用。将得到的合金铸锭破碎,装入真空甩带机中的石英管内,石英管底端喷嘴直径为0.5mm,对真空甩带机的腔体抽真空后,向腔体内充入保护气体;接通真空甩带机电源,加热熔化石英管内的合金,同时,控制石英管底端喷嘴至铜辊表面距离为1mm,调整真空甩带机铜辊转速,使铜辊转速为55m/s,将母合金熔体喷射到转动的铜辊上,得到永磁材料薄带;将薄带破碎球磨得到纳米级的硬磁颗粒。首先将2-甲基丙烯酰氯和光敏树脂以体积比1:3混合,搅拌50min使得两者混合均匀得到混合液,再加入上述硬磁颗粒,混合液和硬磁颗粒的体积比为1:1.5,并搅拌30-60min混合均匀;再加入1wt%的硅酸盐类分散剂,0.2wt%的引发剂过硫酸钾,继续搅拌80min使得料浆完全混合均匀,其中硬磁颗粒占料浆体积分数的55%,料浆粘度为500a.s。将所得到的料浆装入凝胶打印机的针筒中,打印速度为15mm/s,每完成一层打印,喷雾装置将向打印表面喷洒一层雾状的催化剂,并且整个打印过程进行紫外灯照射;将打印所得到的坯体在70℃下干燥20h,将经过干燥的坯体在真空中900℃进行烧结,烧结时间为10h,得到永磁材料。实施例二本实施例永磁材料主体的成分化学式为Mn52Bi45Al3。按照上述成分化学式称取各元素进行配料;将配料置于熔炼炉中,炉内抽真空至少达到5×10-3Pa;然后,通氦气至炉内压力为80kPa;升温至1450℃熔化,搅拌、精炼后浇铸到水冷铜模中待用。将得到的合金铸锭破碎,装入真空甩带机中的石英管内,石英管底端喷嘴直径为0.8mm,对真空甩带机的腔体抽真空后,向腔体内充入保护气体;接通真空甩带机电源,加热熔化石英管内的合金,同时,控制石英管底端喷嘴至铜辊表面距离为1-5mm,调整真空甩带机铜辊转速,使铜辊转速为65m/s,将母合金熔体喷射到转动的铜辊上,得到永磁材料薄带;将薄带破碎球磨得到纳米级的硬磁颗粒。首先将2-甲基丙烯酰氯和光敏树脂以体积比1:6混合,搅拌80min使得两者混合均匀得到混合液,再加入上述硬磁颗粒,混合液和硬磁颗粒的体积比为1:3,并搅拌60min混合均匀;再加入3wt%的硅酸盐类分散剂,0.5wt%的引发剂过硫酸钾,继续搅拌100min使得料浆完全混合均匀,其中硬磁颗粒占料浆体积分数的65vol%,料浆粘度为800Pa.s。将所得到的料浆装入凝胶打印机的针筒中,打印速度为20mm/s,每完成一层打印,喷雾装置将向打印表面喷洒一层雾状的催化剂,并且整个打印过程进行紫外灯照射;将打印所得到的坯体在85℃下干燥30h,将经过干燥的坯体在真空中1050℃进行烧结,烧结时间为20h,得到永磁材料。本文档来自技高网...

【技术保护点】
一种3d打印制备锰铋铝永磁材料的制备方法,该永磁材料主体的成分化学式为Mn100‑x‑yBixAly,其中x=42‑45,y=1‑3;该方法包括如下步骤:(1)按照上述成分化学式称取各元素进行配料;(2)将配料置于熔炼炉中,炉内抽真空至少达到5×10

【技术特征摘要】
1.一种3d打印制备锰铋铝永磁材料的制备方法,该永磁材料主体的成分化学式为Mn100-x-yBixAly,其中x=42-45,y=1-3;该方法包括如下步骤:(1)按照上述成分化学式称取各元素进行配料;(2)将配料置于熔炼炉中,炉内抽真空至少达到5×10-3Pa;然后,通氦气至炉内压力为50-80kPa;升温至1300-1450℃熔化,搅拌、精炼后浇铸到水冷铜模中待用;(3)将得到的合金铸锭破碎,装入真空甩带机中的石英管内,石英管底端喷嘴直径为0.5-0.8mm,对真空甩带机的腔体抽真空后,向腔体内充入保护气体;接通真空甩带机电源,加热熔化石英管内的合金,同时,控制石英管底端喷嘴至铜辊表面距离为1-5mm,调整真空甩带机铜辊转速,使铜辊转速为55-65m/s,将母合金熔体喷射到转动的铜辊上,得到永磁材料薄带;将薄带破碎球磨得到纳米级的...

【专利技术属性】
技术研发人员:不公告发明人
申请(专利权)人:苏州南尔材料科技有限公司
类型:发明
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1