一种原子氧积分通量测量方法及原子氧传感器技术

技术编号:17384763 阅读:47 留言:0更新日期:2018-03-04 05:07
本发明专利技术公开了一种基于惠斯顿电桥的原子氧积分通量测量方法及原子氧传感器。使用本发明专利技术能够消除温度对原子氧积分通量测量的影响,精确在轨监测航天器所处环境经受的原子氧积分通量。本发明专利技术通过在同一个基底上制作两个完全相同的电极‑敏感膜,其中一个作为测试电阻暴露于原子氧环境,另一个通过封装结构屏蔽原子氧的作用作为对比电阻,保证两个敏感膜的环境温度相同,将原子氧积分通量测量公式中的不变的初始电阻转变为随温度实时变化的电阻,排除温度对敏感膜电阻的影响;然后利用设计的惠斯顿电桥,将原子氧积分通量随阻值的变化转化为原子氧积分通量随惠斯顿电桥输出电压的变化,将电阻值测量转换成电压测量,测量方法更为简单、准确。

An atomic oxygen integral flux measurement method and atomic oxygen sensor

The invention discloses a Wheatstone bridge atomic oxygen fluence measurement method and atomic oxygen sensor based on. The invention can eliminate the influence of temperature on the measurement of the integral flux of atomic oxygen and accurately monitor the integral flux of atomic oxygen in the environment of the spacecraft. The present invention by making two identical electrode sensitive film on one substrate, one as a test resistor exposed to atomic oxygen environment, one through the shielding packaging structure of atomic oxygen effects as compared to resistance, ensure two sensitive film of same temperature, the constant change of atomic initial resistance integral oxygen flux measurements in the formula for the change in resistance with the real-time temperature, eliminate the temperature influence on sensitive film resistance; then the design of the Wheatstone bridge, the atomic oxygen fluence with the resistance change of atomic oxygen flux with integral Wheatstone bridge output voltage, the resistance measurement is converted into voltage measurement and the measuring method is more simple and accurate.

【技术实现步骤摘要】
一种原子氧积分通量测量方法及原子氧传感器
本专利技术涉及气体探测
,具体涉及一种基于惠斯顿电桥的原子氧积分通量测量方法及原子氧传感器,可以用于在轨监测航天器周围空间原子氧通量密度和积分通量。
技术介绍
目前常采用电阻型原子氧传感器探头监测原子氧通量密度。传统的原子氧传感器探头包括基底、电极和敏感膜,利用溅射镀膜的方法在薄介质层(基底)上镀上一层非常薄的金属层作为电极,利用电弧放电沉积的方法将敏感膜镀制在基底上,且敏感膜与电极衔接。其原理是,原子氧与敏感膜作用后,改变了敏感膜的电阻值,可以利用原子氧积分通量F与敏感膜电阻R之间的关系(式(1)),通过测量敏感膜的电阻值,得到原子氧积分通量,原子氧积分通量对时间微分,即可得到原子氧通量密度。其中,h0为敏感膜的初始厚度,δ为原子氧对敏感膜的剥蚀率,与敏感膜的材料有关,R0为敏感膜的初始电阻值,R为敏感膜的当前电阻值;目前使用的敏感膜材料包括银膜、锇膜和碳膜。其中银膜与原子氧反应生成固态氧化物,阻碍原子氧与内层银膜继续反应,因此使用寿命短;锇膜与原子氧反应生成的四氧化锇有毒性,没有得到推广利用;碳膜与原子氧反应生成气态物质,被广泛采用作为原子氧敏感膜,但无论采用哪种材料的敏感膜探测原子氧积分通量,均仅考虑敏感膜厚度对阻值变化的影响,而没有考虑温度对阻值变化的影响,这是因为在地面环境中,均是在常温下进行测量,温度变化不大,可忽略温度对阻值变化的影响。但事实上,敏感膜电阻R变化不仅与敏感膜厚度改变有关,还与环境温度有关,对于在轨航天器而言,其身处的太空环境恶劣,温差变化极大,环境温度对敏感膜阻值的影响不可忽视,直接采用式(1)计算得到的原子氧积分通量误差较大,影响测量的准确性。为了排除环境温度的影响,目前一般采用对敏感膜控温,但这明显增加了传感器的质量和功耗。
技术实现思路
有鉴于此,本专利技术提供了一种基于惠斯顿电桥的原子氧积分通量测量方法,能够消除温度对原子氧积分通量测量的影响,精确在轨监测航天器所处环境经受的原子氧积分通量。本专利技术提供了一种原子氧积分通量测量方法,采用电阻型原子氧传感器测量原子氧积分通量,其中,所述原子氧传感器探头中,在基底上镀制两块一模一样的敏感膜,其中一块敏感膜作为待测元件,暴露于原子氧环境,与原子氧发生反应,另一块敏感膜上设置原子氧防护膜,作为参考元件,不与原子氧发生反应;在原子氧传感器电路板上设置两个阻值相同的定值电阻;电路板上的两个定值电阻以及探头上的待测元件、参考元件组成惠斯顿电桥;通过测量惠斯顿电桥的输出电压,得到原子氧积分通量。进一步的,所述原子氧积分通量F为:其中,h0为敏感膜的初始厚度,δ为原子氧对敏感膜的剥蚀率,与敏感膜的材料有关,U为惠斯顿电桥的输入电压;U0为惠斯顿电桥的输出电压。进一步的,所述敏感膜为:银膜、锇膜或碳膜。本专利技术还提供了一种电阻型原子氧传感器,包括探头和电路板,所述探头由基底、电极和敏感膜组成,所述探头中,在基底上设有两块一模一样的敏感膜,其中一块敏感膜暴露于原子氧环境,另一块敏感膜上设置原子氧防护膜,不与原子氧发生反应;所述电路板中,在电路板上设置两个相同阻值的定值电阻;电路板上的两个定值电阻以及探头上的两块敏感膜组成惠斯顿电桥。进一步的,所述敏感膜为:银膜、锇膜或碳膜。进一步的,所述基底材料为氧化铝陶瓷,所述电极材料为金,所述敏感膜为碳膜。进一步的,所述氧化铝陶瓷基底厚度为1mm,所述金电级厚度为100nm,所述碳膜厚度为1.4μm。有益效果:本专利技术通过在同一个基底上制作两个完全相同的电极-敏感膜,其中一个作为测试电阻暴露于原子氧环境,另一个通过原子氧防护膜屏蔽原子氧的作用作为对比电阻,保证两个敏感膜的环境温度相同,将原子氧积分通量测量公式中的不变的初始电阻转变为随温度实时变化的电阻,排除温度对敏感膜电阻的影响;然后利用设计的惠斯顿电桥,将原子氧积分通量随阻值的变化转化为原子氧积分通量随惠斯顿电桥输出电压的变化,将电阻值测量转换成电压测量,测量方法更为简单、准确。附图说明图1为本专利技术探测器探头结构示意图。图2为惠斯顿电桥组成示意图。其中,1-1陶瓷基底,1-2金电极,1-3碳膜,1-4原子氧防护膜,2-1定值电阻R2,2-2对比电阻R0,2-3测量电阻R,2-4定值电阻R1。具体实施方式下面结合附图并举实施例,对本专利技术进行详细描述。本专利技术提供了一种基于惠斯顿电桥的原子氧积分通量测量方法,利用设计的惠斯顿电桥消除温度变化对碳膜原子氧传感器测量精度的影响。本实施例以碳膜为例进行说明,但同样适用于银膜、锇膜等其他敏感膜。首先对原子氧传感器探头结构进行设计:选取1mm厚的氧化铝陶瓷作为基底,利用溅射的方法在基底上镀100nm厚的金属金,作为电极,利用电弧放电沉积方法镀制两个一模一样的1.4μm厚的碳膜,并且,在其中一个碳膜上设置原子氧防护膜,使其不与原子氧发生反应,作为参考元件R0;另一个碳膜暴露于原子氧环境,与原子氧发生反应,作为待测元件R;然后,在原子氧传感器电路板上设置两个定值电阻R1、R2,且R1=R2;电路板上的定值电阻R1、R2以及探头上的参考元件R0、待测元件R组成惠斯顿电桥。如图2所示,电阻R1、R2、R0、R、R1依次串联,惠斯顿电桥的输入电压加载在由R0和R组成的串联电阻上,输出电压为由R和R1组成的串联电阻的电压。惠斯顿电桥中,R1、R2为定值电阻,R是待测元件,R0为补偿元件或者称为参考元件,R0阻值与被测元件R初始阻值相同且阻值随温度变化规律一致,唯一不同的是R0不受原子氧剥蚀。初始,电桥是平衡的,即U0=0;当测试电阻R受原子氧剥蚀后,电阻值发生变化,导致电桥失去平衡,电压输出U0为则:假设碳膜最大耐原子氧通量Fmax,此数值可以在地面获得:则F与U、U0的函数关系为所以有由此,可以通过测量惠斯顿电桥的输入电压U0和输出电压U,得到原子氧积分通量F,且由于测试电阻R和初始电阻R0都随温度实时变化,且变化规律一致,可以排除温度对敏感膜电阻的影响带来的测量误差。综上所述,以上仅为本专利技术的较佳实施例而已,并非用于限定本专利技术的保护范围。凡在本专利技术的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本专利技术的保护范围之内。本文档来自技高网
...
一种原子氧积分通量测量方法及原子氧传感器

【技术保护点】
一种原子氧积分通量测量方法,采用电阻型原子氧传感器测量原子氧积分通量,其特征在于,所述原子氧传感器探头中,在基底上镀制两块一模一样的敏感膜,其中一块敏感膜作为待测元件,暴露于原子氧环境,与原子氧发生反应,另一块敏感膜上设置原子氧防护膜,作为参考元件,不与原子氧发生反应;在原子氧传感器电路板上设置两个阻值相同的定值电阻;电路板上的两个定值电阻以及探头上的待测元件、参考元件组成惠斯顿电桥;通过测量惠斯顿电桥的输出电压,得到原子氧积分通量。

【技术特征摘要】
1.一种原子氧积分通量测量方法,采用电阻型原子氧传感器测量原子氧积分通量,其特征在于,所述原子氧传感器探头中,在基底上镀制两块一模一样的敏感膜,其中一块敏感膜作为待测元件,暴露于原子氧环境,与原子氧发生反应,另一块敏感膜上设置原子氧防护膜,作为参考元件,不与原子氧发生反应;在原子氧传感器电路板上设置两个阻值相同的定值电阻;电路板上的两个定值电阻以及探头上的待测元件、参考元件组成惠斯顿电桥;通过测量惠斯顿电桥的输出电压,得到原子氧积分通量。2.如权利要求1所述的原子氧积分通量测量方法,其特征在于,所述原子氧积分通量F为:其中,h0为敏感膜的初始厚度,δ为原子氧对敏感膜的剥蚀率,与敏感膜的材料有关,U为惠斯顿电桥的输入电压;U0为惠斯顿电桥的输出电压。3.如权利要求...

【专利技术属性】
技术研发人员:杨生胜石红黄一凡薛玉雄郭兴苗育君乔佳王广毅
申请(专利权)人:兰州空间技术物理研究所
类型:发明
国别省市:甘肃,62

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1