锆酸镧复相陶瓷及其制备方法和应用技术

技术编号:16807210 阅读:113 留言:0更新日期:2017-12-16 04:45
本发明专利技术公开了一种锆酸镧复相陶瓷及其制备方法和应用,该锆酸镧复相陶瓷包括锆酸镧和铝酸镧,所述铝酸镧弥散分布于锆酸镧中。制备方法包括以下步骤:将锆酸镧和铝酸镧组成的混合粉末经放电等离子体烧结,得到锆酸镧复相陶瓷。铝酸镧以铁弹增韧方式对锆酸镧进行增韧,因而该锆酸镧复相陶瓷具有断裂韧性高、致密度高、化学稳定性及体积稳定性好等优点,在高温热障涂层应用领域具有广泛的应用前景。

Lanthanum zirconate complex ceramics and their preparation methods and Applications

The invention discloses a zirconium lanthanum multiphase ceramic and its preparation method and application. The zirconium Lanthanum Complex ceramics include lanthanum zirconate and lanthanum aluminate, and the lanthanum aluminate is dispersed in lanthanum zirconate. The preparation method includes the following steps: a hybrid powder composed of lanthanum zirconate and lanthanum aluminate is sintered by discharge plasma to obtain lanthanum zirconate complex ceramics. Lanthanum aluminate toughened lanthanum zirconium oxide with iron elastic toughening. Therefore, the zirconate lanthanum composite ceramic has many advantages such as high fracture toughness, high density, good chemical stability and good volume stability. It has wide application prospects in the application field of high temperature thermal barrier coatings.

【技术实现步骤摘要】
锆酸镧复相陶瓷及其制备方法和应用
本专利技术属于复相陶瓷及其制备
,尤其涉及一种锆酸镧(La2Zr2O7)复相陶瓷及其制备方法和应用。
技术介绍
热障涂层(TBC)是一种先进的陶瓷材料系统,主要应用于燃气轮机和航空发动机的高温金属元件上,如燃烧室和透平叶片。目前最常用的热障涂层是传统的质量分数为8%的氧化钇稳定的氧化锆(8YSZ)。随着热障涂层的不断发展,与传统的8YSZ热障涂层相比,锆酸镧由于其更低的热导率,更低的氧透过率,更高的熔点作为具有潜力的新一代替代涂层。与传统的8YSZ热障涂层相比,锆酸镧具有更低的断裂韧性,导致热障涂层抗冲击性能较差,更容易在服役过程中碎裂。同时,锆酸镧热胀系数低,与基体的热胀系数相差较大,热震性能和使用寿命也就相应降低。众所周知,对于结构用的工程陶瓷,脆性一直是其应用的主要障碍。很多的研究工作都是围绕着克服脆性,或者说增韧的主题展开的,虽然目前关于陶瓷增韧机理的研究成果很多,但是实际上研究开发的增韧陶瓷并不多,或者虽然有增韧复合陶瓷面世,但其增韧机理尚不明确。另外,某些增韧相的加入有可能使热障涂层在热循环过程中出现体积变化,从而导致与基体出现体积失配的现象,或者增韧相在高温下与基体或陶瓷基相发生反应,这些现象均会严重降低热障涂层的使用寿命。例如,现有技术中有采用钛酸钡增韧锆酸镧,但是长期的热循环过程中,钛酸钡会锆酸镧产生反应,导致涂层失效。还有案例采用氧化钇稳定四方相的氧化锆增韧锆酸镧,通过相变增韧提高锆酸镧的断裂韧性,但是体积变化易导致涂层产生内应力,促使涂层开裂,不利于热障涂层的长期使用。因此,锆酸镧复相陶瓷应用于高温热障涂层,还有众多技术难点函待解决。
技术实现思路
本专利技术要解决的技术问题是克服现有技术的不足,提供一种断裂韧性高、致密度高、化学稳定性及体积稳定性好的锆酸镧复相陶瓷,还相应提供该锆酸镧复相陶瓷的制备方法及作为热障涂层的应用。为解决上述技术问题,本专利技术采用以下技术方案:一种锆酸镧复相陶瓷,包括锆酸镧和铝酸镧,所述铝酸镧弥散分布于锆酸镧中。上述的锆酸镧复相陶瓷,优选的,所述铝酸镧中存在c轴取向与裂纹扩展方向平行的铁弹畴,所述铁弹畴在裂纹扩展时发生转向,消耗裂纹扩展能量。铁弹材料及铁弹相变是近年来的研究热点,然而将铁弹材料引入陶瓷材料中,铁弹材料并不一定能成功发挥其铁弹增韧作用,也即,在裂纹扩展阶段,铁弹相中的众多取向各异的铁弹畴不一定会受裂纹拉应力影响而发生铁弹相变,进而也就无法消耗裂纹扩展能量实现增韧。目前即使有铁弹材料增韧陶瓷的文献报道,但均是将提高的断裂韧性估计为铁弹增韧,并没有直接从微观上观察到在裂纹扩展阶段,铁弹相中的众多取向各异的铁弹畴受到裂纹周围的拉应力发生铁弹相变的现象,因而无法证明铁弹材料成功发挥了其铁弹增韧作用。而申请人在提高热障涂层断裂韧性的研究过程中发现,将铝酸镧(LaAlO3)作为第二相引入锆酸镧基体,铝酸镧在裂纹尖端存在一个铁弹畴,其c轴取向与裂纹扩展方向平行,当外加一载荷作用于材料时,材料内部产生的应力导致裂纹扩展,应力超过临界值后,在裂纹尖端应力弛豫,该铁弹畴受裂纹拉应力作用从而发生垂直于裂纹扩展的方向的转向,这个过程会消耗掉一部分裂纹扩展过程中所需要的能量,阻碍裂纹扩展,从而提高材料的断裂韧性,也即,铝酸镧引入锆酸镧陶瓷基体后成功发挥了其铁弹增韧作用。上述的锆酸镧复相陶瓷,优选的,所述铝酸镧在复相陶瓷中的摩尔分数为10%~50%。如果铝酸镧含量低于10%,则由于含量太少,增韧效果不明显。如果含量超过50%,则容易使锆酸镧其他优异的性能如热导率、高熔点降低。上述的锆酸镧复相陶瓷,优选的,所述锆酸镧复相陶瓷的断裂韧性大于2MPa·m1/2。作为一个总的专利技术构思,本专利技术还提供一种上述锆酸镧复相陶瓷的制备方法,包括以下步骤:将锆酸镧和铝酸镧组成的混合粉末经放电等离子体烧结,得到锆酸镧复相陶瓷。上述的锆酸镧复相陶瓷的制备方法,优选的,所述混合粉末中,铝酸镧的摩尔分数为10%~50%。上述的锆酸镧复相陶瓷的制备方法,优选的,所述混合粉末的粒径≤200目。上述的锆酸镧复相陶瓷的制备方法,优选的,所述放电等离子烧结的工艺为:温度1400℃~1600℃,压力30MPa~50MPa,保温时间10min~20min。作为一个总的专利技术构思,本专利技术还提供一种上述的锆酸镧复相陶瓷或上述的制备方法所制备的锆酸镧复相陶瓷作为热障涂层的应用。与现有技术相比,本专利技术的优点在于:1、本专利技术将铝酸镧作为增韧相引入锆酸镧基体,铝酸镧在裂纹扩展过程中发生铁弹相变,消耗裂纹扩展所需能量,从而实现增韧目的。并且,该相变过程为二级相变,无体积变化,可避免在作为热障涂层的应用过程中,因热障涂层体积变化,在热障涂层和基体中产生内应力,导致热障涂层过早失效的问题。2、铝酸镧和锆酸镧在在高温下不反应,化学稳定性好,可避免在作为热障涂层的应用过程中,因杂相的生成产生热胀系数失配、内应力过大、涂层与基体脱落等现象,最终导致热障涂层失效的问题。并且铝酸镧的热胀系数(11.4×10-6K-1)高于锆酸镧(8.6×10-6K-1),可提高锆酸镧复相陶瓷的热胀系数。3、本专利技术采用放电等离子烧结法制备锆酸镧复相陶瓷,该烧结方法制备涂层的大气等离子喷涂以及等离子辅助-物理气相沉积的方法接近,保证了热障涂层在喷涂或沉积到基体后断裂韧性的变化值较小。并且,放电等离子烧结的时间短,晶粒来不及长大,相对于晶粒尺寸更大的烧结方法,断裂韧性会更好。同时,放电等离子烧结具有较高的致密度,作为热障涂层,可降低氧气的透过率。另外,采用的放电等离子烧结出的样品成分均匀,性能均匀,避免了局部性能不均匀导致的突然失效。附图说明图1为本专利技术实施例4所制备的锆酸镧复相陶瓷的表面形貌SEM照片。图2为对比例1所制备的锆酸镧陶瓷的断面SEM照片。图3为实施例5所制备的锆酸镧复相陶瓷的断面SEM照片。图4为实施例2所制备的锆酸镧复相陶瓷的表面形貌(a图)和压痕导致裂纹(b、c图)的AFM对照照片,其中c图为b图的局部放大图。具体实施方式以下结合说明书附图和具体优选的实施例对本专利技术作进一步描述,但并不因此而限制本专利技术的保护范围。实施例1:一种本专利技术的锆酸镧复相陶瓷,包括锆酸镧和铝酸镧,铝酸镧弥散分布于锆酸镧中,铝酸镧在复相陶瓷中的摩尔分数为10%。一种上述本实施例的锆酸镧复相陶瓷的制备方法,包括以下步骤:(1)将粒径都不超过5μm的锆酸镧粉末和铝酸镧粉末置于聚氨酯球磨罐中,其中,铝酸镧的加入量为锆酸镧和铝酸镧混合摩尔总量的10%。把球磨罐置于行星式球磨仪中,用锆珠在酒精或水中以300转/min的转速球磨24h,得到混合粉末浆料。(2)将球磨罐中的混合粉末浆料倒入容器中,然后放入干燥箱中充分除去水分或者酒精,其中干燥箱的温度在80℃,干燥时间为2h。将干燥后的粉末用200目的筛子过筛,密封干燥保存,即得到混合粉末。(3)将混合粉末装入直径40mm的模具中,进行放电等离子烧结。烧结过程为:以100K/min的升温速率升温至1500℃的烧结温度,在40MPa的压力下保温10min,即烧结出圆柱状块体锆酸镧复相陶瓷。每次装料40g左右,会烧出高度5mm,直径40mm的圆柱状块体锆酸镧复相陶瓷。对比例1:本对比例为锆酸镧陶瓷,本文档来自技高网
...
锆酸镧复相陶瓷及其制备方法和应用

【技术保护点】
一种锆酸镧复相陶瓷,包括锆酸镧,其特征在于,还包括铝酸镧,所述铝酸镧弥散分布于锆酸镧中。

【技术特征摘要】
1.一种锆酸镧复相陶瓷,包括锆酸镧,其特征在于,还包括铝酸镧,所述铝酸镧弥散分布于锆酸镧中。2.根据权利要求1所述的锆酸镧复相陶瓷,其特征在于,所述铝酸镧中存在c轴取向与裂纹扩展方向平行的铁弹畴,所述铁弹畴在裂纹扩展时发生转向,消耗裂纹扩展能量。3.根据权利要求2所述的锆酸镧复相陶瓷,其特征在于,所述铝酸镧在复相陶瓷中的摩尔分数为10%~50%。4.根据权利要求3所述的锆酸镧复相陶瓷,其特征在于,所述锆酸镧复相陶瓷的断裂韧性大于2MPa·m1/2。5.一种锆酸镧复相陶瓷的制备方法,包括以下步骤:将锆酸镧和铝酸镧组成的混合粉末经放电等离子体烧...

【专利技术属性】
技术研发人员:王衍飞韩敬刘荣军曹英斌赵静泽贺鹏博
申请(专利权)人:中国人民解放军国防科技大学
类型:发明
国别省市:湖南,43

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1