结构化LDPC的编码、译码方法及装置制造方法及图纸

技术编号:16607529 阅读:31 留言:0更新日期:2017-11-22 17:45
本发明专利技术提供了一种结构化LDPC的编码、译码方法及装置,其中,上述编码方法包括:确定编码使用的基础矩阵,所述基础矩阵包括一个或多个子矩阵,所述子矩阵包括:左上角子矩阵Hb1和左上角子矩阵Hb2,其中,所述左上角子矩阵Hb1和左上角子矩阵Hb2的行数和列数均小于所述基础矩阵Hb的行数和列数,且所述左上角子矩阵Hb1是左上角子矩阵Hb2的左上角子矩阵;根据所述基础矩阵和与所述基础矩阵对应的扩展因子Z,对源信息比特序列进行LDPC编码运算,得到码字序列,其中,Z是大于等于1的正整数。采用本发明专利技术提供的上述技术方案,解决了相关技术中LDPC编译码器无法支持递增冗余HARQ和灵活性不足的问题。

【技术实现步骤摘要】
结构化LDPC的编码、译码方法及装置
本专利技术涉及通信领域,具体而言,涉及一种结构化低密度奇偶校验码(LowDensityParityCheckCodes,简称为LDPC)的编码、译码方法及装置。
技术介绍
随着无线数字通信的发展及各种高速率、突发性强的业务的出现,人们对纠错编码技术提出了愈来愈高的要求,图1为一种典型的数字通信系统。LDPC是一类可以用非常稀疏的奇偶校验矩阵或者二分图定义的线性分组码,最初由Gallager发现,所以称为Gallager码。经过数十年的沉寂,随着计算机硬件和相关理论的发展,MacKay和.Neal重新发现了它,并证明了它具有逼近香农限的性能。最新研究表明,LDPC码具有以下特点:低译码复杂度,可线性时间编码,具有逼近香农限性能,可并行译码,以及在长码长条件下优于Turbo码。LDPC码是一种特殊的线性分组码。通信中,每发送一个分组长度为N比特的码字,为了保证其具有一定的纠错能力,需要有M个校验比特,每个码字都要求满足HxT=0T,其中H为二元域上M×N维的奇偶校验矩阵。所有的运算都是在二元域GF(2)上进行的,这里加和减是“异或”运算,而乘是“与”运算。LDPC码是一种基于稀疏校验矩阵的线性分组码,正是利用它的校验矩阵的稀疏性,才能实现低复杂度的编译码,从而使得LDPC码走向实用化。前面提到的Gallager码是一种正则的LDPC码(regularldpcc),而Luby和Mitzenmacher等人对Gallager码进行了推广,提出非正则的LDPC码(irregularldpcc)。Gallager最初提出的编码具有规则的码结构,其校验矩阵是稀疏矩阵,且每一行具有相同个数的1,每一列也具有相同个数的1。M.G.Luby认为,如果允许校验矩阵的行或者列中非零元的个数发生变化,同时保证矩阵的稀疏性,那么编码的译码算法仍然适用,而编码的性能却能够得到极大的提高,使之能够达到甚至超过Turbo码的性能。这是因为在这种编码结构中,如果对应二分图的左节点和右节点有合适的次数分布(degreedistribution),那么在译码时将会存在一种波状效应(waveformeffect),将极大地提高译码性能。非正则码就是这种允许同种节点有不同次数的低密度的编码,而Gallager最初提出的编码相应的称为正则码。LDPC奇偶校验矩阵的图形表示形式是二分图。二分图和校验矩阵之间具有一一对应的关系,一个M*N的奇偶校验矩阵H定义了每个具有N比特的码字满足M个奇偶校验集的约束。一个二分图包括N个变量节点和M个奇偶校验节点。当第m个校验涉及到第n个比特位,即H中第m行第n列的元素Hm,n=1时,将有一根连线连接校验节点m和变量节点n。二分图中,任何同一类的节点之间都不会有连接,并且二分图中的总边数和校验矩阵中非零元素的个数相等。概念girth用来定量描述二分图中的短圈。在图论中,二分图的girth是指一个图中最短圈的圈长,例如:某个二分图有长度为6、8、10、12和长度更长的圈,则该二分图的girth为6,变量节点的girth则指通过该节点的最短圈的圈长,由于一个变量节点唯一对应一个码字比特,所以一个码字比特的girth就是一个变量节点的girth。结构化LDPC码结构化LDPC码是一类工业界最流行的LDPC码,具有最广阔的应用,目前出现在IEEE802.11n/ad、IEEE802.16e等国际标准中,这一类LDPC码在学术界又常常被称为准循环LDPC码或多边LDPC码。这类LDPC码结构化的LDPC码的奇偶校验矩阵H设为(M×z)×(N×z)矩阵,它是由M×N个分块矩阵构成,每个分块矩阵都是z×z的基本置换矩阵的不同幂次,基本置换矩阵为单位阵时,它们都是单位阵的循环移位矩阵(文中默认为右移)。通过这样的幂次j就可以唯一标识每一个分块矩阵,单位矩阵的幂次可用0表示,矩阵一般用-1来表示。这样,如果将H的每个分块矩阵都用它的幂次代替,就得到一个M×N的幂次矩阵Hb。这里,定义Hb是H的基础矩阵,H称为Hb的扩展矩阵。在实际编码时,z=码长/基础矩阵的列数N,称为扩展因子。例如,矩阵可以用下面的参数z和一个2×4的基础矩阵Hb扩展得到:z=3和准确的定义如下:(N,K)结构化LDPC码是由大小为(mb×z)×(nb×z)的奇偶校验矩阵H定义,其中奇偶校验矩阵H是由大小为mb×nb的基础矩阵Hb、扩展因子z和基本置换矩阵P三个变量确定。信息序列长度K=(nb-mb)×z,码字长度N=nb×z,码率r=k/n。基础矩阵Hb中所有元素置换成全0方阵或者基本置换矩阵P的hbij次幂矩阵得到扩展后奇偶校验矩阵H,其中hbij是Hb中的元素。基础矩阵Hb的定义如下,扩展后奇偶校验矩阵H的定义如下,因此,也可以说LDPC码的编码器是由基础矩阵Hb,扩展因子z及所选择的基本置换矩阵唯一生成的。根据上述基础矩阵的定义,可以看出在给定扩展因子(一个大于1的整数z)的条件下,基础矩阵和奇偶校验矩阵本质上是一个东西。LDPC码编码系统分组码的直接编码方法是:把一个码字x划分为N-M个信息比特s和M个校验比特c,相应地,把M×N的奇偶校验矩阵H划分为分别对应于信息比特和校验比特的M×(N-M)和M×M大小的两块,即H=[A|B]。根据H×x=0,可得:于是可以得到A×s+B×c=0,进一步推出c=B-1As。当块B采用特殊的矩阵结构,如严格下三角结构(半随机矩阵)、双下三角结构等,则B-1具有非常简单的形式,可以直接按照上面式子直接计算得到码字中校验比特部分c,并且可以保证编码器具有线性复杂度。也可以采用Richarson线性时间编码算法:奇偶校验矩阵H具有准下三角结构,设H具有如下形式:设编码后码字是x=(s,p1,p2),这里s为编码码字的系统比特部分,p1和p2为码字的校验比特部分,p1的长度为g,p2长度为(m-g)。上式中,A的维数是(m-g)×(n-m),B是(m-g)×g,T是(m-g)×(m-g),C是g×(n-m),D是g×g,E是g×(m-g)。所有这些矩阵都是稀疏矩阵,而T是下三角矩阵,主对角线元素全为1。校验比特部分可以由下面式子求得:其中,考虑到结构化LDPC码的向量特征,还可以考虑采用向量译码的方法,如果一个结构化LDPC码的校验位部分是一个严格下三角矩阵,则可以按照以下向量方式来编码,非常成熟和简单。(n,k)结构化LDPC码的编码码字为c=(x,b),其中x=(x0,x1,…,xk-1)是信息序列,b=(b0,b1,…,bn-k-1)是校验序列。对输入的k个比特的信息序列x进行LDPC编码,产生含有n-k个比特的校验序列b,LDPC编码码字c=[x,b],其中,n=nb×z,k=kb×z,kb=nb-mb,z是扩展因子。信息序列x可以分成kb个长度为z的子序列:x=[x(0),x(1),x(2),…,x(kb-1)]其中,每个子序列如下:x(i)=[xi×z,xi×z+1,xi×z+2,…,xi×z+z-1]校验序列b分成mb个长度为z的子序列:b=[b(0),b(1),b(2),…,b(mb-1)]其中,每个子序列如下:b(i)=[bi×z,bi×z+1,bi×z+2本文档来自技高网...
结构化LDPC的编码、译码方法及装置

【技术保护点】
一种结构化低密度奇偶校验码LDPC的编码方法,其特征在于,包括:确定编码使用的基础矩阵Hb,其中,所述基础矩阵Hb包括对应于系统比特的Mb×Kb的块A和对应于校验比特的Mb×Mb的块B,即Hb=[A,B],其中,hbij表示所述基础矩阵Hb的第i行和j列的元素,i是所述基础矩阵的行索引,j是所述基础矩阵的列索引,Kb=Nb‑Mb,Kb是大于等于4的整数,Nb是整数,i=1、…、Mb,j=1,…、Nb;所述基础矩阵Hb包括一个或多个子矩阵,所述子矩阵包括:左上角子矩阵Hb1和左上角子矩阵Hb2,其中,所述左上角子矩阵Hb1和左上角子矩阵Hb2的行数和列数均小于所述基础矩阵Hb的行数和列数,且所述左上角子矩阵Hb1是左上角子矩阵Hb2的左上角子矩阵;根据所述基础矩阵和与所述基础矩阵Hb对应的扩展因子Z,对源信息比特序列进行LDPC编码运算,得到码字序列,其中,Z是大于或者等于1的正整数。

【技术特征摘要】
2016.05.13 CN 20161031941011.一种结构化低密度奇偶校验码LDPC的编码方法,其特征在于,包括:确定编码使用的基础矩阵Hb,其中,所述基础矩阵Hb包括对应于系统比特的Mb×Kb的块A和对应于校验比特的Mb×Mb的块B,即Hb=[A,B],其中,hbij表示所述基础矩阵Hb的第i行和j列的元素,i是所述基础矩阵的行索引,j是所述基础矩阵的列索引,Kb=Nb-Mb,Kb是大于等于4的整数,Nb是整数,i=1、…、Mb,j=1,…、Nb;所述基础矩阵Hb包括一个或多个子矩阵,所述子矩阵包括:左上角子矩阵Hb1和左上角子矩阵Hb2,其中,所述左上角子矩阵Hb1和左上角子矩阵Hb2的行数和列数均小于所述基础矩阵Hb的行数和列数,且所述左上角子矩阵Hb1是左上角子矩阵Hb2的左上角子矩阵;根据所述基础矩阵和与所述基础矩阵Hb对应的扩展因子Z,对源信息比特序列进行LDPC编码运算,得到码字序列,其中,Z是大于或者等于1的正整数。2.根据权利要求1所述的方法,其特征在于,所述源信息比特序列为(Nb-Mb)×Z比特的序列;所述比特码字序列为Nb×Z比特。3.根据权利要求1所述的方法,其特征在于,所述左上角子矩阵Hb1由所述矩阵Hb的前4行和前Kb+4列的交集构成,所述左上角子矩阵Hb1的每一行的对应非零Z*Z方阵的元素个数都小于等于Kb+2且大于等于Kb-2,所述左上角子矩阵Hb1的最后四列的方阵是一个左下三角矩阵或者准左下三角矩阵;和/或所述左上角子矩阵Hb2由所述矩阵Hb的前Kb行和前2*Kb列的交集构成,所述左上角子矩阵Hb2的前4行、最后Kb-4列的交集构成的子矩阵的所有元素都是对应Z*Z零方阵的元素,所述左上角子矩阵Hb2的最后kb-4行和最后kb-4列的交集构成的子矩阵是一个大小为(kb-4)*(kb-4)的左下三角矩阵或者准左下三角矩阵,所述左上角子矩阵Hb2的最后kb-4行、第Kb+1到Kb+3列的交集构成的子矩阵的所有元素都是对应零Z*Z方阵的元素;若左上角子矩阵Hb1的最后四列的方阵是一个下三角矩阵,所述左上角子矩阵Hb2的第Kb+1列仅有一个对应非零Z*Z方阵的元素,若左上角子矩阵Hb1的最后四列的方阵是一个准下三角矩阵,所述左上角子矩阵Hb2的第Kb+1列的所有元素都是对应零Z*Z方阵的元素;所述左上角子矩阵Hb2的最后kb-4行和前kb列的交集构成一个子矩阵,在这个子矩阵中每一行的对应非零Z*Z方阵的元素个数都小于等于Kb-2;其中,Nb大于等于2*Kb。4.根据权利要求1至3中任一项所述的方法,其特征在于,所述扩展因子Z支持一组确定值集合{z1,z2,z3…,zV},其中,z1,z2,…,zV是按照从小到大顺序排列的,zr、zs、zt、zu是所述集合中四个确定值的扩展因子且满足z1≤zr≤zs≤zt≤zu≤zV,其中,V、r、s、t、u是下标,1≤r≤s≤t≤u≤V,V是大于等于2的整数;当z1≤Z=zi<zr时候,对于对应扩展因子Z=zi和基础矩阵Hb的LDPC码,在每个LDPC码字中所有重量大于2的码字比特中至少一个比特的girth等于4,对于对应扩展因子Z=zi和删除最重R列的基础矩阵Hb的LDPC码,在每个LDPC码字中所有重量大于2的码字比特的girth都等于6,其中,R小于等于Kb/2;当zr≤Z=zi<zs时候,对于对应扩展因子Z=zi和基础矩阵Hb的LDPC码,在每个LDPC码字中所有重量大于2的码字比特的girth都等于6;当zs≤Z=zi<zt时候,对于对应扩展因子Z=zi和基础矩阵Hb的LDPC码,在每个LDPC码字中所有重量大于2的所有系统比特的girth都等于6,在每个LDPC码字中至少一个重量大于2的校验比特的girth大于等于8;当zt≤Z=zi<zu时候,对于对应扩展因子Z=zi和基础矩阵Hb的LDPC码,在每个LDPC码字中所有重量大于2的码字比特的girth都等于8;当zu≤Z=zi<zV时候,对于对应扩展因子Z=zi和基础矩阵Hb的LDPC码,在每个LDPC码字中所有重量大于2的系统比特的girth都等于8,在每个LDPC码字中至少一个重量大于2的校验比特的girth大于等于10;其中,一个LDPC码字的每一码字比特对应所述奇偶校验矩阵的每一列,每个码字比特的重量是指对应列中非零元素的个数,且i=1,2,…,V。5.根据权利要求3所述的方法,其特征在于,所述基础矩阵Hb还包括:左上角子矩阵Hb3,其中:该左上角子矩阵Hb3由所述基础矩阵Hb的前2*kb行和前3*Kb列的交集构成了左上角子矩阵Hb3,Hb3的最后Kb行和最后Kb列的交集构成子矩阵是一个大小为kb*kb的单位阵或者单位阵的循环移位矩阵;Hb3的前Kb行和最后Kb列的交集构成的子矩阵的所有元素都是对应Z*Z零方阵的元素;Hb3的第Kb+1列到2*Kb列构成一个子矩阵,在该子矩阵的L1列中每一列所有的对应非零方阵的元素只有1个,在这个子矩阵的剩余Kb-L1列的所有元素都是对应Z*Z零方阵的元素,其中,L1是大于等于0且小于Kb的整数;其中,Nb大于等于3*Kb。6.根据权利要求1至3中任一项所述的方法,其特征在于,Nb是取值区间[2*Kb,12*Kb]中的一个正整数。7.根据权利要求1至3中任一项所述的结构化LDPC码的编码方法,其特征在于,Kb取值为2到16之间的一个整数。8.根据权利要求7所述的结构化LDPC码的编码方法,其特征在于,增强移动宽带eMMB场景,和,超高可靠和低延迟URLLC场景使用不同的Kb取值。9.根据权利要求1所述的结构化LDPC码的编码方法,其特征在于,在增强移动宽带eMMB场景中编码器将使用所述的Hb矩阵来实现LDPC码的编码,在超高可靠和低延迟场景中编码器将使用另外一个基础矩阵来实现LDPC码的编码,其中,所述另一个基础矩阵的所有对应非零方阵的元素的行列位置索引对(i,j)构成的集合是所述基础矩矩阵的所有对应非零方阵的元素的行列位置索引(i,j)对构成的集合的子集。10.根据权利要求1至3中任一项所述的方法,其特征在于,所述基础矩阵Hb的第g行的对应非零Z*Z方阵的元素个数小于等于g+1行对应非零Z*Z方阵的元素个数。其中,g=1,2,…,Nb-1。11.根据权利要求1至3中任一项所述的方法,其特征在于,所述基础矩阵Hb的第j列所有对应非零方阵的元素有Lj个,从上向下第一个元素是0,Lj是大于等于1的正整数,j=1、…、Nb。12.根据权利要求1所述的方法,其特征在于,所述的LDPC码支持V种码长,每种码长都对应一个具有相同大小Mb*Nb的基础矩阵Hb,并且每种码长的基础矩阵的对应非零方阵元素在矩阵中出现的位置都是相同的或者至多3个不同,所述扩展因子Z支持一组确定的集合{z1,z2,z3,…,zVmax},每种码长的扩展因子是所述扩展因子集合中一个元素,每种码长的对应非零方阵元素的取值都是通过最大码长的对应非零方阵元素计算得到的,即其中,α=Pmax/pl,v=1,2,….,Vmax;z1,z2,z3,…,zVmax是按照从小到大排列的,zVmax是最大码长的扩展因子,zv是第v个码长的扩展因子,是最大码长的第i行和第j列的非0元素,hijv第v个码长的第i行和第j列的对应非零方阵元素。mod为取模操作,[]为下取整操作,Round为四舍五入操作,所述扩展因子zv都是一个正整数值pl的n倍,即z=pl*n,其中,所述正整数值pl是子集合Pset的一个元素,其中,所述子集合Pset是Pmax的所有正整数因子所构成集合中的一个子集,n是一个自然数,Pmax是大于等于4的整数。13.根据权利要求1所述的方法,其特征在于,所述的LDPC码支持V种码长,每种码长都有一个具有相同大小mb*Nb的基础矩阵Hb,并且每种码长的基础矩阵的对应非零方阵元素在矩阵中出现的位置都是相同的或者至多3个不同,所述的扩展因子Z支持一组确定的集合{z1,z2,z3,…,zVmax},每种码长的扩展因子是所述扩展因子集合中一个元素,每种码长的对应非零方阵元素的取值都是通过最大码长的对应非零方阵元素计算得到的,至少包括以下方式之一:方式一:取模mod方法:方式2:取整(scale+floor)方法:方式3:舍入(scale+round)方法:其中,α=Pmax/pl,v=1,2,….,Vmax,z1,z2,z3,…,zVmax是按照从小到大排列的,zVmax是最大码长的扩展因子,zv是第v个码长的扩展因子,是最大码长的第i行和第j列的非-1元素,hijv第v个码长的第i行和第j列的对应非零方阵元素,mod为取模操作,[]为下取整操作,Round为四舍五入操作,所述扩展因子zv都是一个正整数值pl的n倍,即z=pl*n,其中,所述正整数值pl是子集合Pset的一个元素,其中,所述子集合Pset是Pmax的所有正整数因子所构成集合中的一个子集,n是一个自然数,Pmax是大于等于4的整数。14.根据权利要求12或者13所述的方法,其特征在于,所述n的值是自然数集合nset中的一个元素,其中,所有n的值构成所述自然数集合nset。15.根据权利要求12或者13所述的方法,其特征在于,所述Pmax等于2的X次幂,其中,X是大于或者等于2的整数。16.根据权利要求1所述的方法,其特征在于,所述LDPC码支持V种码长,每种码长都对应一个具有相同大小Mb*Nb的基础矩阵Hb;所述扩展因子Z支持一组确定的扩展因子集合{z1,z2,z3,…,zVmax},每种码长的扩展因子是所述扩展因子集合中一个元素,所述扩展因子zv是一个正整数值pl的n倍,即z=pl*n,其中,所述正整数值pl是子集合Pset的一个元素,其中,所述子集合Pset是Pmax的所有正整数因子所构成集合中的一个子集,n是一个自然数;在所述对源信息比特序列进行LDPC编码运算之前,包括:对所述源信息比特序列进行交织,由以下至少一个参数确定所述交织方法:所述Pmax、所述pl和所述n。17.根据权利要求16所述的方法,其特征在于,所述对源信息比特序列进行LDPC编码运算之后,所述方法还包括:对得到码字序列进行解交织,由以下至少一个参数确定所述解交织方法:所述Pmax、所述pl和所述n。18.根据权利要求16所述的方法,其特征在于,对所述源信息比特序列进行交织包括:对编码前信息比特进行均匀分段,每段长度为pl比特;对于每一段后面添加Pmax-pl比特,添加后每一段都有Pmax比特;对每个段进行长度为Pmax的二进制比特翻转BRO交织;其中,所述Pmax等于2的X次幂,其中,X是大于或者等于2的整数。19.根据权利要求17所述的方法,其特征在于,对所述源信息比特序列进行交织包括:对编码后码字比特进行均匀分段,每段长度为Pmax比特;对每个段进行长度为Pmax的二进制比特翻转BRO反交织。20.一种结构化低密度奇偶校验码LDPC的译码方法,其特征在于,包括:确定译码使用的基础矩阵Hb,其中,所述基础矩阵Hb包括对应于系统比特的Mb×Kb的块A和对应于校验比特的Mb×Mb的块B,即Hb=[A,B],其中,hbij表示所述基础矩阵Hb的第i行和j列的元素,i是所述基础矩阵的行索引,j是所述基础矩阵的列索引,Kb=Nb-Mb,Kb是大于等于4的整数,Nb是整数i=1、…、Mb,j=1,…、Nb;所述基础矩阵Hb包括一个或多个子矩阵,所述子矩阵包括:左上角子矩阵Hb1和左上角子矩阵Hb2,其中,所述左上角子矩阵Hb1和左上角子矩阵Hb2的行数和列数均小于所述基础矩阵Hb的行数和列数,且所述左上角子矩阵Hb1是左上角子矩阵Hb2的左上角子矩阵;根据所述基础矩阵和与所述基础矩阵Hb对应的扩展因子Z,预设比特数的码字进行译码运算,得到源信息比特序列,其中,Z是大于或者等于1的正整数。21.根据权利要求20所述的方法,其特征在于,所述源信息比特序列为(Nb-Mb)×Z比特的序列;所述预设比特数为Nb×Z比特。22.根据权利要求20所述的方法,其特征在于,所述左上角子矩阵Hb1由所述矩阵Hb的前4行和前Kb+4列的交集构成,所述左上角子矩阵Hb1的每一行的对应非零Z*Z方阵的元素个数都小于等于Kb+2且大于等于Kb-2,所述左上角子矩阵Hb1的最后四列的方阵是一个左下三角矩阵或者准左下三角角矩阵;和/或所述左上角子矩阵Hb2由所述矩阵Hb的前Kb行和前2*Kb列的交集构成,所述左上角子矩阵Hb2的前4行、最后Kb-4列的交集构成的子矩阵的所有元素都是对应Z*Z零方阵的元素,所述左上角子矩阵Hb2的最后kb-4行、最后kb-4列的交集是一个大小为(kb-4)*(kb-4)的左下三角矩阵或者准左下三角矩阵,所述左上角子矩阵Hb2的最后kb-4行、第Kb+1到Kb+3列的交集构成子矩阵的所有元素都是对应零Z*Z方阵的元素;若左上角子矩阵Hb1的最后四列的方阵是一个下三角矩阵,所述左上角子矩阵Hb2的第Kb+1列的部分仅有一个对应非零Z*Z方阵的元素,若左上角子矩阵Hb1的最后四列的方阵是一个准下三角矩阵,所述左上角子矩阵Hb2的第Kb+1列的部分的所有元素都是对应零Z*Z方阵的元素;所述左上角子矩阵Hb2的最后kb-4行和前kb列的交集构成一个子矩阵,在这个子矩阵中每一行的对应非零Z*Z方阵的元素个数都小于等于Kb-2;其中,Nb大于等于2*Kb。23.根据权利要求20至22中任一项所述的方法,其特征在于,所述扩展因子Z支持一组确定值集合{z1,z2,z3…,zV},其中,z1,z2,…,zV是按照从小到大顺序排列的,zr、zs、zt、zu是所述集合中四个确定值的扩展因子且满足z1≤zr≤zs≤zt≤zu≤zV,其中,V、r、s、t、u是下标,1≤r≤s≤t≤u≤V,V是大于等于2的整数;当z1≤Z=zi<zr时候,对于对应扩展因子Z=zi和基础矩阵Hb的LDPC码,在每个LDPC码字中所有重量大于2的码字比特中至少一个比特的girth等于4,对于对应扩展因子Z=zi和删除最重R列的基础矩阵Hb的LDPC码,在每个LDPC码字中所有重量大于2的码字比特的girth都等于6,其中,R小于等于Kb/2;当zr≤Z=zi<zs时候,对于对应扩展因子Z=zi和基础矩阵Hb的LDPC码,在每个LDPC码字中所有重量大于2的码字比特的girth都等于6;当zs≤Z=zi<zt时候,对于对应扩展因子Z=zi和基础矩阵Hb的LDPC码,在每个LDPC码字中所有重量大于2的所有系统比特的girth都等于6,在每个LDPC码字中至少一个重量大于2的校验比特的girth大于等于8;当zt≤Z=zi<zu时候,对于对应扩展因子Z=zi和基础矩阵Hb的LDPC码,在每个LDPC码字中所有重量大于2的码字比特的girth都等于8;当zu≤Z=zi<zV时候,对于对应扩展因子Z=zi和基础矩阵Hb的LDPC码,在每个LDPC码字中所有重量大于2的系统比特的girth都等于8,在每个LDPC码字中至少一个重量大于2的校验比特的girth大于等于10;其中,一个LDPC码字的每一码字比特对应所述奇偶校验矩阵的每一列,每个码字比特的重量是指对应列中非零元素的个数,且i=1,2,…,V。24.根据权利要求20所述的方法,其特征在于,所述的LDPC码支持V种码长,每种码长都对应一个具有相同大小Mb*Nb的基础矩阵Hb,并且每种码长的基础矩阵的对应非零方阵元素在矩阵中出现的位置都是相同的或者至多3个不同,所述扩展因子Z支持一组确定的集合{z1,z2,z3,…,zVmax},每种码长的扩展因子是所述扩展因子集合中一个元素,每种码长的对应非零方阵元素的取值都是通过最大码长的对应非零方阵元素计算得到的,即其中,α=Pmax/Pl,v=1,2,….,Vmax;z1,z2,z3,…,zVmax是按照从小到大排列的,zVmax是最大码长的扩展因子,zv是第v个码长的扩展因子,是最大码长的第i行和第j列的非0元素,hijv第v个码长的第i行和第j列的非零方阵元素。mod为取模操作,[]为下取整操作,Round为四舍五入操作,所述扩展因子zv都是一个正整数值pl的n倍,即z=pl*n,其中,所述正整数值pl是子集合Pset的一个元素,其中,所述子集合Pset是Pmax的所有正整数因子所构成集合中的一个子集,n是一个自然数,Pmax是大于等于4的整数。25.根据权利要求20所述的方法,其特征在于,所述的LDPC码支持V种码长,每种码长都有一个具有相同大小Mb*Nb的基础矩阵Hb,并且每种码长的基础矩阵的对应非零方阵元素在矩阵中出现的位置都是相同的或者至多3个不同,所述的扩展因子Z支持一组确定的集合{z1,z2,z3,…,zVmax},每种码长的扩展因子是所述扩展因子集合中一个元素,每种码长的对应非零方阵元素的取值都是通过最大码长的对应非零方阵元素计算得到的,至少包括以下方式之一:方式一:取模mod方法:方式2:取整(scale+floor)方法:方式3:舍入(scale+round)方法:其中,α=Pmax/Pl,v=1,2,….,Vmax,z1,z2,z3,…,zVmax是按照从小到大排列的,zVmax是最大码长的扩展因子,zv是第v个码长的扩展因子,是最大码长的第i行和第j列的非零方阵元素,hijv第v个码长的第i行和第j列的非零方阵元素,mod为取模操作,[]为下取整操作,Round为四舍五入操作,所述扩展因子zv都是一个正整数值pl的n倍,即z=pl*n,其中,所述正整数值pl是子集合Pset的一个元素,其中,所述子集合Pset是Pmax的所有正整数因子所构成集合中的一个子集,n是一个自然数,Pmax是大于等于4的整数。26.根据权利要求24或者25所述的方法,其特征在于,所述n的值是自然数集合nset中的一个元素,其中,所有n的值构成所述自然数集合nset。27.根据权利要求24或者25所述的方法,其特征在于,所述Pmax等于2的X次幂,其中,X是大于或者等于2的整数。28.根据权利要求20所述的方法,其特征在于,所述的LDPC码支持V种码长,每种码长都对应一个具有相同大小Mb*Nb的基础矩阵Hb;所述扩展因子Z支持一组确定的扩展因子集合{z1,z2,z3,…,zVmax},每种码长的扩展因子是所述扩展因子集合中一个元素,所述扩展因子zv是一个正整数值pl的n倍,即z=pl*n,其中,所述正整数值pl是子集合Pset的一个元素,其中,所述子集合Pset是Pmax的所有正整数因子所构成集合中的一个子集,n是一个自然数;在预设比特数的码字进行译码运算,得到源信息比特序列之前,包括:对预设比特数的码字进行交织,由以下至少一个参数确定所述交织方法:所述Pmax、所述pl和所述n。29.根据权利要求28所述的方法,其特征在于,对预设比特数的码字进行译码运算,得到源信息比特序列之后,所述方法还包括:对所述源...

【专利技术属性】
技术研发人员:徐俊
申请(专利权)人:中兴通讯股份有限公司
类型:发明
国别省市:广东,44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1