基于对角变换矩阵灰色预测模型DTMGM
Cloud prediction and prediction method based on DTMGM+ grey model
Grey prediction model based on diagonal transformation matrix DTMGM
【技术实现步骤摘要】
基于DTMGM+灰色模型的云预测和预报方法
本专利技术属于计算机信息处理技术在大气科学研究领域中的具体应用。尤其涉及一种基于DTMGM+灰色模型的云预测和预报方法。
技术介绍
云是大气层中水汽和凝结核的可见聚合物,是非常重要的气象要素之一,也是表征地球大气系统行为和地球物理状态的一项重要因子。在云的预测预报方法上,大气科学中以大气系统演变的内因为立足点的基于数值天气预报(数值模式)的云预测方法虽然有充分的动力学、热力学和物理学理论支持,但预测结果释用十分复杂,在实用中受到一定局限;以云团移动的外部表现特征为观察点的基于线性外推的云预测方法虽然简单,但存在预测时效短、预测准确率低的问题,并且只能预测已有云团的质心(或中心)移动情况而无法预测云的新生以及云的消散。
技术实现思路
本专利技术针对以上两种云预测和预报方法的不足,提供一种新型的兼具有物理意义和便捷实用性的云的预测和预报方法。本专利技术是通过以下技术方案实现的:一种基于DTMGM+灰色模型的云预测和预报方法,其特征在于包含以下的主要步骤:(1)将原始卫星云图(遥感资料)或卫星遥感产品作为数据源,使用起报点“0时刻”及其之前的少量的n个等时间间隔的临近历史资料作为初始运算数据集;(2)在运算数据集中用各时次数据平面内的以固定位置点为中心的m*m窗口内的数据矩阵构造时间矩阵序列,建立DTMGM+灰色预测模型,解算模型,通过初始运算数据集的统计特征、每次建模的模型发展系数和所设置的生长因子、消亡因子对模型输出的m*m矩阵的各元素进行修订和调控,对经修订后的矩阵进行中心位置有限邻域滤波并输出滤波后的矩阵中心位置元素数值,将此数值作为未来下一时刻的该固定位置点上的预测值;(3)将经上一步骤解算出的所有的固定位置点上的预测值组合输出为起报点“0时刻”后第1时刻的预测值平面,并将此预测值平面数据添加到运算数据集中,按照时间顺序排列,更新运算数据集,重复第(2)步骤过程,采用递推的方法,依次输出第2、第3至第f时刻的预测值平面,构建预测产品集。在代表未来状态的预测产品集中解析目标信息的局部或整体的状态,实现对未来时刻的云的生成、发展、移动、合并、消亡等演变进程的预测和预报。本专利技术与现有的云预测和预报方法相比,具有的有益效果是:预测模型的运算过程既包括平面内固定位置点的有限邻域内信息的相互影响,又包括时间维度方向该点的有限邻域内历史信息的影响,属于时空内的运算,具有明确的物理内涵和意义,充分考虑了云的生消演变的非线性非平稳性特点,采用先叠加背景实施整体预测,再从预测产品中解析和分析目标发展演变趋势的做法,克服了一般的云团质心(或中心)线性外推预测预报方法的局限,既能预测云团的移动和内部发展情况,又能敏感地捕捉和预测外部的云的新生信息。同时,本专利技术避免了基于数值天气预报(数值模式)的云预测预报方法的巨大运算,避免了复杂的释用过程。经验证在云和云团的短时预测预报应用中具有较高的准确性和实用性。附图说明图1基于DTMGM+灰色模型的云预测和预报方法流程图图2基于DTMGM+灰色模型的MCSs云覆盖区域的预测和预报效果图说明:是一例使用DTMGM+灰色模型的中尺度对流系统(MesoscaleConvectiveSystems,MCSs)云系的预测结果的图像化展示。实例中使用了FY2G气象卫星2016年5月28日世界时间03、04、05、06、07时共5个时次的南半球中低纬度地区上空卫星视场内65*93像素范围大小(地面约325*465km)的L1级水汽通道卫星遥感资料为源数据,对未来5个时次(09-13时)的云演变情况进行了预测。图中第2、4、6行二值图像为解析出的MCSs云目标的边缘;图3基于DTMGM+灰色模型的MCSs云覆盖区域的预报准确率曲线图说明:是使用DTMGM+灰色模型的MCSs云覆盖区域预测实例中的预报准确率随预报时长增加的变化情况。使用的预测准确率指标为:探测比POD=n成功/(n成功+n漏报),虚报比FAR=n虚报/(n成功+n虚报),临界成功指数CSI=n成功/(n成功+n虚报+n漏报),漏报比MAR=n漏报/(n成功+n漏报),其中,当预测和实况相符合时称为“成功”;当预测低于标准,而实况符合标准时,称为“漏报”;当预测符合标准,而实况低于标准时,称为“虚报”。由图所示可知,使用DTMGM+灰色模型的MCSs云覆盖区域1-2小时预测准确率较高、漏报和虚报率较低,预报结果的误差随预报时长逐渐增大。具体实施方式下面结合附图1和实例,对本专利技术的实施方式做具体流程的详细描述,本专利技术的效能将会变得更加明显:1.在L1级水汽通道卫星遥感资料中选取65*93像素大小的感兴趣区域,以2016年5月28日世界时间03、04、05、06、07时该区域内5个时次的数据资料作为初始运算数据集BT,分别标记为BT_4,BT_3,BT_2,BT_1,BT_0;2.按照时间顺序提取数据集中各数据平面内以位置(s,t)为中心的m*m窗口内的数值矩阵,将其排列为原始矩阵序列:(X(0)(1),X(0)(2),X(0)(3),X(0)(4),X(0)(5)),对矩阵分别实施对角变换,则有对角变换矩阵序列以及与之对应的特征向量矩阵序列其中:为特征值;v1,...,vm为特征向量。将对角变换矩阵序列实施一次累加,生成矩阵序列二者满足关系式:并满足DTMGM+(1,1+m)对角变换矩阵灰色预测模型方程:由该模型的发展系数a和灰控制作用量diag(a1,a2,...,am)构成的参数向量的最小二乘估计满足式:其中:B为m(n-1)*(1+m)阶矩阵,Yn为m(n-1)*1的向量;矩阵B的后m列由1、0两元素组成,第2列的首元素为1,其之后每隔m个元素为1,此列余皆为0,依此类推,第m+1列的第m+1个元素为1,其之后每隔m个元素为1,此列余皆为0。从而可求得DTMGM+(1,1+m)模型的预测序列D=diag(a1,a2,...,am)即可解出原始矩阵序列的预测矩阵序列其中,为的广义逆矩阵,当预测矩阵时,取其前k项的平均(或加权平均)值。在本例本次计算中,n=5,m=5。通过以上方法,将解得的矩阵中的各元素(用表示)使用下式予以修订:上式中,as,t为数据集中平面位置(s,t)处DTMGM+模型发展系数,x(0)(n)为参与本次建模的原始矩阵时间序列的尾矩阵中对应位置的数值,α为消亡因子,β为生长因子(在本例中取α=0.85,β=1.02),为初始运算数据集的极小值,为初始运算数据集的极大值。由修订后的各个元素组成了经修订的预测矩阵对矩阵中心位置的3*3窗口内的矩阵元素数值进行滤波,将滤波后的矩阵中心位置元素数值输出为以其作为平面位置(s,t)处的下一个时刻的预测值。在本例中即以的数值作为平面位置(s,t)处的下一个时刻的预测值。当位置点(s,t)因位于数据平面边缘或近边缘导致以其为中心的m*m窗口内数据不足时,此位置不予计算和预测,仅以初始数据集中“0时刻”相同位置的数值(BT_0(s,t))作占位填充。依次计算并输出数据集中其它所有位置处的下一个时刻的预测值。3.将所有位置处的预测值按照位置组合输出为下一时刻的预测值平面PP_1,更新运算数据集为{BT_4,BT_3,BT_2,BT_1,B本文档来自技高网...

【技术保护点】
一种基于DTMGM+灰色模型的云预测和预报方法,其特征在于包含以下的主要步骤:(1)将原始卫星云图(遥感资料)或卫星遥感产品作为数据源,使用起报点“0时刻”及其之前的少量的n个等时间间隔的临近历史资料作为初始运算数据集;(2)在运算数据集中用各时次数据平面内的以固定位置点为中心的m*m窗口内的数据矩阵构造时间矩阵序列,建立DTMGM
【技术特征摘要】
1.一种基于DTMGM+灰色模型的云预测和预报方法,其特征在于包含以下的主要步骤:(1)将原始卫星云图(遥感资料)或卫星遥感产品作为数据源,使用起报点“0时刻”及其之前的少量的n个等时间间隔的临近历史资料作为初始运算数据集;(2)在运算数据集中用各时次数据平面内的以固定位置点为中心的m*m窗口内的数据矩阵构造时间矩阵序列,建立DTMGM+灰色预测模型,解算模型,通过初始运算数据集的统计特征、每次建模的模型发展系数和所设置的生长因子、消亡因子对模型输出的m*m矩阵的各元素进行修订和调控,对经修订后的矩阵进行中心位置有限邻域滤波并输出滤波后的矩阵中心位置元素数值,将此数值作为未来下一时刻的该固定位置点上的预测值;(3)将经上一步骤解算出的所有的固定位置点上的预测值组合输出为起报点“0时刻”后第1时刻的预测值平面,并将此预测值平面数据添加到运算数据集中,按照时间顺序排列,更新运算数据集,重复第(2)步骤过程,采用递推的方法,依次输出第2、第3至第f时刻的预测值平面,构建预测产品集。在代表未来状态的预测产品集中解析目标信息的局部或整...
【专利技术属性】
技术研发人员:谢松云,杜智宏,范润钧,张娟丽,陈刚,
申请(专利权)人:西北工业大学,
类型:发明
国别省市:陕西,61
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。