当前位置: 首页 > 专利查询>厦门大学专利>正文

废电器中阻燃剂的超临界二氧化碳萃取回收装置及其方法制造方法及图纸

技术编号:1585466 阅读:223 留言:0更新日期:2012-04-11 18:40
废电器中阻燃剂的超临界二氧化碳萃取回收装置及其方法,涉及一种超临界二氧化碳萃取回收技术,提供一种废电器中阻燃剂的超临界二氧化碳萃取回收方法及其装置。回收装置的二氧化碳储罐出口接低温冷却液循环泵入口,低温冷却液循环泵冷气出口接高压泵入口,高压泵出口接萃取器入口,萃取器设于恒温加热器内,萃取器出口接在线紫外分光光度仪并通过背压阀后接分离收集器进口,分离收集器出口接流量计,分离收集器设于冷却器内。其步骤为废电器先粉碎并筛分,装入萃取器中,启动循环泵,打开储罐出口阀,启动高压泵,二氧化碳经过滤器由高压泵进入萃取器,通过在线紫外分光光度仪观察萃取情况;萃取出的阻燃剂在分离收集器中用甲苯溶解回收。

【技术实现步骤摘要】

本专利技术涉及一种超临界二氧化碳萃取回收技术,尤其是涉及一种。
技术介绍
随着电子产品更新换代的加快,报废家电、废弃计算机以及通讯设备的处理及资源化再利用是本世纪各国紧迫的任务之一。目前各国的工作重点仍然是为避免环境污染而处理电子废弃物,对于电子废弃物的资源化回收再利用投入较少。处理固体废弃物的传统方法主要采用填埋及焚烧的方法,但这些方法使电子废弃物中的有毒有害物质污染土壤、地下水及空气。同时,电子废弃物中含有的大量金属及高附加值的阻燃剂没能回收再利用,造成巨大的资源浪费。另外,由于电子产品中塑料所占的比重越来越大,采用填埋处理很难降解;采用焚烧处理,则因为高分子聚合物及阻燃剂等的存在易生成二恶英及呋喃等致癌物质进入土壤和空气中。目前,一些发达国家对于电子废弃物中贵重金属的回收利用已非常重视,开发出了工业处理设备,主要采用把电子废弃物机械粉碎成细小颗粒,然后采用筛分、密度分离、磁力及静电分离等方法分离金属和塑料,进而回收金属。但是,剩余的塑料颗粒因为无法再作为生产电器的原料使用,仍被作为废弃物填埋或焚烧,造成环境污染。而这些塑料中含有15%~30%的高附加值阻燃剂,如果回收再利用,将带来可观的经济效益、社会效益和生态效益。超临界流体技术是近30年来发展起来的“环境友好”的高新技术。超临界流体由于具有特殊的物理化学性质,是当前的一个研究热点,特别是超临界流体萃取技术的研究及实现工业化最早。超临界流体萃取技术具有传统萃取方法所不具有的优势,它通过调节压力和温度而方便地改变溶剂的性质,控制萃取选择性,萃取速度快。目前,二氧化碳是超临界流体萃取技术中应用最多、最广泛的溶剂,具有价格便宜、惰性、无毒等优点。超临界二氧化碳密度大,对有机物溶解能力强,能在接近室温下操作,与萃取产物分离彻底而且容易。因此,超临界二氧化碳萃取技术已逐步应用在化工、医药、食品、轻工、材料、环保等领域,并处于高速发展中。超临界二氧化碳萃取分离固体混合物的研究已有许多报道,对于传质机理已建立了相关动力学模型,许多研究得到了高压下许多复杂体系相平衡数据,同时也进行了超临界二氧化碳萃取过程的基本热力学模型的研究,得到了许多基础数据。二氧化碳的分子结构决定了它对烃类和弱极性的脂溶性物质有很好的溶解能力,电子产品的树脂类材料中主要含有的添加型溴系或磷系阻燃剂,大部分为酯类有机物,这些阻燃剂在超临界二氧化碳中普遍具有较高的溶解度,因此,采用超临界二氧化碳萃取此类阻燃剂可收到良好的效果。目前,国内外对于此类有机溴系和磷系阻燃剂萃取研究的相关报道很少,而且,相关的基础数据相当缺乏。Gamse,T.等(Gamse T,Steinkellner F,Marr R,et al.Solubility studies oforganic flame retardants in supercritical CO2,Ind.Eng.Chem.Res.2000,394888)研究了溴系阻燃剂HBCD(六溴环十二烷)及TBBA(四溴双酚A)在超临界二氧化碳中的溶解度,温度范围为25~100℃,压力为200~500bar,并对实验结果应用Chrastil公式进行了模拟,得到了较好的吻合结果。Bunte,G.等(Bunte G,Hardle Th,Krause H,et al.Extraction ofbrominated flame retardants with supercritical CO2,Process Technol.Proc.1996,12535)研究了采用超临界二氧化碳从模拟硫酸镁混合物中萃取典型的溴系阻燃剂HBCD(六溴环十二烷),TBBA(四溴双酚A)及TBPA的工艺过程,考察了萃取温度、萃取压力和萃取时间对于阻燃剂回收率的影响。从萃取过程得出在80℃ 350bar条件下,当萃取时间达到30分钟时,TBBA的回收率已达到70%以上,因此萃取效率较高;另一方面,从实验结果可知,温度对于阻燃剂的回收率影响不大,而压力的影响非常显著,当压力大到350bar时,TBBA的回收率明显提高,达到70%以上。但是此研究没有对混合物的颗粒大小对回收率的影响进行研究,并且,仅研究了模拟混合物,没有研究真实废电器制品中的阻燃剂萃取分离。另外,以上研究都局限在已经受到使用限制的溴系阻燃剂的研究上,没有对目前及未来主要应用的磷系阻燃剂的萃取回收进行研究。
技术实现思路
本专利技术的目的在于针对现有的废电器中阻燃剂回收技术中存在的问题,提供一种废电器中阻燃剂的超临界二氧化碳萃取回收方法及其装置。为此本专利技术采用的技术方案是采用实际废旧电器的树脂材料作为原料,采用二氧化碳为萃取溶剂,回收废旧电器树脂材料中的添加型有机阻燃剂,以获得高的阻燃剂回收率。本专利技术所述的废电器中阻燃剂的超临界二氧化碳萃取回收装置设有二氧化碳储罐、低温冷却液循环泵、高压泵、萃取器、在线紫外分光光度仪、背压阀、分离收集器、冷却器、流量计等。溶剂二氧化碳储罐的出口接低温冷却液循环泵入口,低温冷却液循环泵的冷气出口接高压泵的入口,高压泵出口接到萃取器的底部入口,萃取器设于恒温加热器内并由恒温加热器加热,萃取器出口接在线紫外分光光度仪并通过背压阀后接分离收集器的进口,分离收集器出口接流量计,分离收集器设于冷却器内。在二氧化碳储罐的出口与低温冷却液循环泵入口之问设有阀门与过滤器,阀门的入口接二氧化碳储罐出口,过滤器进口与出口分别接阀门出口与低温冷却液循环泵进口。在萃取器出口可接压力表,压力由高压泵和背压阀调节。在恒温加热器与冷却器上分别设有温度控制器,以调节恒温加热器与冷却器上的温度。整套装置可采用耐高压不锈钢材料制成。本专利技术所述的废电器中阻燃剂的超临界二氧化碳萃取回收方法其步骤为1)先粉碎并筛分出不同粒径范围的印刷电路板或电器树脂材料颗粒,作为备用原料;2)取同一粒径的颗粒,装入萃取器中,启动低温冷却液循环泵,打开二氧化碳储罐出口阀,启动高压泵;3)二氧化碳经过滤器由高压泵加压进入萃取器,萃取釜压力由背压阀控制;4)由恒温加热器加热并由温度控制器控制萃取釜温度;5)通过在线紫外分光光度仪观察萃取情况;6)萃取出的阻燃剂在冷却的分离收集器中用甲苯溶解回收,从分离收集器中流出的二氧化碳通过流量计计量流量,萃取物溶液用气相色谱-质谱联用仪和气相色谱仪进行定性及定量分析,萃取完成后,称量并记录萃取器中剩余固体粉末的重量。可得到其中的有机磷或溴系阻燃剂的回收率为70%~100%。粉碎并筛分出不同粒径范围的印刷电路板或电器树脂材料颗粒其粒径范围为0.1~2.8mm。所述的二氧化碳储罐的二氧化碳流量为0.035~0.16g/s,萃取时间为0.5~4h。所述的由高压泵加压进入萃取器的压力为10~50MPa。控制萃取釜温度为313~373K。在步骤5)中,当达到要求的压力和温度后,通过在线紫外分光光度仪观察萃取情况,同时保持稳定的二氧化碳流量。萃取剂可采用二氧化碳,收集溶剂为有机溶剂,可选自甲苯、丙酮、乙醚、氯仿等。原料采用废电器的印刷电路板和树脂机壳材料等,可回收的阻燃剂主要有磷酸三苯酯TPP,磷酸三甲苯酯TCP,磷酸二苯基(叔丁基苯基)酯DPBPP,磷酸二苯(甲苯)酯DPTP,磷酸二苯异辛酯DPOP,磷酸三(2-丁氧乙基)酯T本文档来自技高网
...

【技术保护点】
废电器中阻燃剂的超临界二氧化碳萃取回收装置,其特征在于设有二氧化碳储罐、低温冷却液循环泵、高压泵、萃取器、在线紫外分光光度仪、背压阀、分离收集器、冷却器和流量计;二氧化碳储罐的出口接低温冷却液循环泵入口,低温冷却液循环泵的冷气出口接高压泵的入口,高压泵出口接到萃取器的底部入口,萃取器设于恒温加热器内并由恒温加热器加热,萃取器出口接在线紫外分光光度仪并通过背压阀后接分离收集器的进口,分离收集器出口接流量计,分离收集器设于冷却器内。

【技术特征摘要】

【专利技术属性】
技术研发人员:王宏涛李军赵凯歌苏玉忠
申请(专利权)人:厦门大学
类型:发明
国别省市:92[中国|厦门]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术
  • 暂无相关专利