【技术实现步骤摘要】
一种人脸特征点检测方法
本专利技术属于计算机视觉领域,尤其涉及一种新型图像模式下以人脸三维姿态信息为辅助约束的人脸特征点检测方法,在人脸识别、人脸姿态表情分析及人脸合成中有着重要应用。
技术介绍
近年来,随着深度学习的发展,卷积神经网络(ConvolutionalNeuralNetworks,CNN)在人脸特征点检测方面取得了很好的效果。CNN以人脸原始图像为输入,利用局部感受野策略获取的特征具有更好的表达能力;权值共享结构减少了权值的数量进而降低了网络模型的复杂度;同时,利用图像局部相关性原理对特征图进行的下采样在保留有用结构信息的同时有效地减少了数据的处理量,因此CNN被广泛应用于人脸图像的特征提取。YiSun等人在2013年提出三级深度卷积神经网络级联的人脸特征点检测模型(DeepConvolutionalNetworkCascade,DCNN)。该网络的第一级以人脸图像的三块不同区域(全部人脸区域,眼睛与鼻子区域,鼻子与嘴唇区域)作为输入,分别训练三个卷积神经网络来预测特征点的位置,融合三个网络的预测值以得到更加稳定的初级特征点检测结果。第二、三级在每个特 ...
【技术保护点】
一种人脸特征点检测方法,其特征在于,包括以下步骤:步骤1、将原始人脸图像进行人脸检测定位与剪裁和三通道多特征图融合,得到三通道GEH模式图Picture
【技术特征摘要】
1.一种人脸特征点检测方法,其特征在于,包括以下步骤:步骤1、将原始人脸图像进行人脸检测定位与剪裁和三通道多特征图融合,得到三通道GEH模式图PictureGEH;步骤2、以三种特征图融合后的三通道GEH模式图作为卷积神经网络的输入,进行网络人脸特征提取,所述人脸特征包含:人脸特征点和三维姿态,所述特征点检测及姿态检测均以线性回归问题对应的最小二乘函数设计双任务损失函数;步骤3、采用梯度反向传播算法对所述双任务损失函数进行网络训练,最终学习到人脸特征点检测权重和姿态检测权重,在测试过程,经过相同的人脸特征提取网络,以实现人脸特征点检测及人脸三维姿态的检测。2.如权利要求1所述的人脸特征点检测方法,其特征在于,所述网络特征提取由3个卷积层和3个池化层,2个全连接层交替完成;首先,将三通道GEH模式图PictureGEH作为第一层卷积操作的输入输出特征图yj的计算公式如以下公式所示:其中,f表示卷积操作,l表示当前网络层数,i表示输入特征图的数量,j表示输出特征图的数量,wij为待求的卷积核参数,bj是偏置参数,wij和bj在实验开始时采用随机正态初始化的方式获取;然后,根据卷积阶段得到的结果,将特征送入线性回归问题对应的函数,设计的双任务损失函数表达式如以下公式所示:
【专利技术属性】
技术研发人员:孙艳丰,赵爽,孔德慧,王少帆,尹宝才,
申请(专利权)人:北京工业大学,
类型:发明
国别省市:北京,11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。