碱性金属或其氢化物在低地球轨道作为化学推进剂的应用制造技术

技术编号:15382105 阅读:113 留言:0更新日期:2017-05-18 23:15
本发明专利技术公开了一种碱性金属、碱性金属和富氢(无氧)材料的混合物、碱性金属的氢化物的应用,其作为低地球轨道的燃料,与原子氧氧化剂反应来实现航天器的化学推进。本发明专利技术的碱性金属类燃料在航天器低地球轨道中化学推进的应用,通过利用低地球轨道中的原子氧作为氧化剂,利用碱性金属的强还原性,二者化学反应产生的高热量作用于氢元素,产生推力,具有燃烧充分高效、绿色无污染、容易控制等优点。

The use of basic metals or their hydrides in low earth orbit as chemical propellants

The invention discloses an alkaline metal, alkaline metal and hydrogen rich (anaerobic) application material mixture, alkaline metal hydride, as low earth orbit fuel, and the reaction of atomic oxygen oxidizing agent to achieve chemical propulsion spacecraft. The application of alkaline metal fuel of the invention in chemical propulsion spacecraft in low earth orbit, through the use of atomic oxygen in low earth orbit as oxidizing agent, reducing the use of alkaline metal, two high heat chemical reaction generated by hydrogen, thrust, has the advantages of complete burning efficiency, pollution-free easy to control, etc..

【技术实现步骤摘要】
碱性金属或其氢化物在低地球轨道作为化学推进剂的应用
本专利技术涉及航天器低地球轨道的推进
特别是将原子氧作为双组元或多组元化学推进剂之一,利用原子氧的强氧化性和碱性金属及其衍生物的强还原性,实现低地球轨道的化学推进。
技术介绍
在200km~700km高度的低地球轨道高度上,残余大气的主要成分为原子氧O和分子氮N2,其中,原子氧含量约为80%,分子氮约为20%。200km轨道高度上的原子氧体密度为5×109个/cm3。原子氧的在轨热动能一般为0.01eV~0.025eV,对应温度一般为1000~1500K。但轨道上航天器的典型速度为8km/s,其与原子氧粒子的碰撞动能为5.3eV。因此,这种原子氧以罕见的高温氧化、高速碰撞与航天器材料表面作用的结果是非常严重的。空间推进技术的应用领域主要有星、船、弹、箭、器等各种航天器,涵盖了众多推进类型,主要有冷气推进、化学推进、电推进、核推进、电磁推进、激光推进、反物质推进、动量转换推进和无工质推进等,在航天领域发挥着重要作用。其中,化学推进是通过携带的化学燃料,在空间基于化学反应产生推力。其中,卫星推进剂主要包括常规单组元推进剂(无水肼、过氧化氢)、常规双组元推进剂(液氟/肼、液氟/液氢、液氧/液氢、四氧化二氮/甲基肼等)、先进化学推进剂(硝酸羟胺基单组元推进剂、二硝酰胺基单组元推进剂、胶体推进剂)、电推进的推进剂等。其中,化学推进剂中的燃料为醇类、甘氨酸、硝酸三乙酸铵等。而电推进主要分为电热、电磁、静电三大类。电热推进剂可以是生物废气、氮、氩、氨、肼,其中,肼应用最为广泛;静电推进剂主要是氙气,还有铯、铟等;电磁推进剂主要是氙气,还有氩气、氪气、聚四氟乙烯等。目前,还没有任何一种推进技术,利用低地球轨道的原子氧作为氧化剂,利用碱性金属或其氢化物作为燃料,利用两者之间的化学反应来实现推进。
技术实现思路
本专利技术的目的是提供一种碱性金属或其氢化物的新应用,本专利技术人出人意料地利用低地球轨道原子氧作为氧化剂,通过碱性金属、碱性金属和富氢(无氧)材料的混合物或者碱性金属的氢化物作为燃料,来实现航天器在低地球轨道的化学推进。本专利技术的碱性金属、碱性金属和富氢(无氧)材料的混合物、碱性金属的氢化物的应用,其作为低地球轨道的燃料,与原子氧氧化剂反应来实现航天器的化学推进。其中,碱性金属M为碱金属或碱土金属。其中,碱金属优选锂、钠、钾。碱土金属优选为镁、钡。其中,碱金属氢化物为氢化锂、氢化钠、氢化钾、氢化铷、氢化铯。其中,富氢材料为聚烯烃粉末,优选乙烯粉末、聚丙烯粉末、聚丁烯粉末、聚戊烯粉末、聚4-甲基-1-戊烯粉末等。其中,富氢材料与碱性金属的混合比为0.5-10。其中,通过对原子氧的在轨收集和控制,实现原子氧的反应速率的控制以达到航天器推进速度的控制。本专利技术的碱性金属类燃料在航天器低地球轨道中化学推进的应用,通过利用低地球轨道中的原子氧作为氧化剂,利用碱性金属的强还原性,二者化学反应产生的高热量作用于氢元素,产生推力,具有燃烧充分高效、绿色无污染、容易控制等优点。具体实施方式以下对本专利技术进行详细说明。在200km~700km高度的低地球轨道高度上,残余大气的主要成分为原子氧O和分子氮N2,在这样的环境下,实现推进从来没有人想到要利用该地球轨道中的主要成分来进行推进的动力来源。但是,本专利技术人出人意料的发现,利用碱性金属作为主要的燃料来源,通过其与原子氧的反映,能够很好地进行航天器的推进。具体反应过程如下:这里M为碱性金属,MH为碱性金属氢化物,XH为一种无氧富氢材料。则有:M+O=M2O/MO+热量M+O=M++O-+热量MH+O=M2O/MO+H2+热量MH+O=M2O/MO+2H++热量M+O+XH=MO+H2/H++热量实施方式一碱金属作为燃料将固态碱金属放置在反应室中,将低地球轨道的原子氧收集并引入反应室,通过控制原子氧入射到固态碱金属上的流量来控制两者的反应速度,通过使用固态碱金属作为燃料,使之与原子氧发生剧烈的化学反应,由于空间是真空状态,反应后会生成粒子,在大量热量的作用下喷射出去,从而产生对航天器向前的反作用力,进行推进。实施方式二碱土金属作为燃料将固态碱土金属或者固态碱土金属与碱金属的混合物放置在反应室中,将低地球轨道的原子氧收集并引入反应室,,通过控制原子氧入射到固态碱土金属或者固态碱土金属与碱金属的混合物上的流量来控制两者的反应速度,通过使用固态碱土金属或者固态碱土金属与碱金属的混合物作为燃料,使之与原子氧发生剧烈的化学反应,由于空间是真空状态,反应后会生成粒子,在大量热量的作用下喷射出去,从而产生对航天器向前的反作用力,进行推进。实施方式三碱金属与富氢材料混合物作为燃料将碱金属与聚烯烃粉末按照一定的重量比或者摩尔比进行充分混合并压制成片,将压片放置在反应室中,将低地球轨道的原子氧引入反应室,通过控制原子氧入射到压片上的流量来控制两者的反应速度,通过使用碱金属作为燃料,使之与原子氧发生剧烈的化学反应,产生大量的热量,大量的热量进一步与聚烯烃反应,使之分解为单个分子或离子,由于空间是真空状态,反应后生成的粒子在大量热量的作用下喷射出去,从而产生对航天器向前的反作用力,进行推进。实施方式四碱金属氢化物作为燃料将固态碱金属氢化物放置在反应室内,将低地球轨道原子氧引入反应室,通过控制原子氧入射到固态碱金属氢化物上的流量来控制两者的反应速度,通过使用碱金属氢化物作为燃料,使之与原子氧发生剧烈的化学反应,由于空间是真空状态,反应后会生成粒子,在大量热量的作用下喷射出去,从而产生对航天器向前的反作用力,进行推进。尽管上文对本专利技术的具体实施方式给予了详细描述和说明,但是应该指明的是,我们可以依据本专利技术的构想对上述实施方式进行各种等效改变和修改,其所产生的功能作用仍未超出说明书所涵盖的精神时,均应在本专利技术的保护范围之内。本文档来自技高网
...

【技术保护点】
碱性金属、碱性金属和无氧富氢材料的混合物、碱性金属的氢化物的应用,其作为低地球轨道的燃料,与原子氧氧化剂反应来实现航天器的化学推进。

【技术特征摘要】
1.碱性金属、碱性金属和无氧富氢材料的混合物、碱性金属的氢化物的应用,其作为低地球轨道的燃料,与原子氧氧化剂反应来实现航天器的化学推进。2.如权利要求1所述的应用,其中,碱性金属为碱金属或碱土金属。3.如权利要求2所述的应用,其中,碱金属为锂、钠、钾、铷、铯;碱土金属为铍、镁、钙、锶、钡。4.如权利要求1所述的应用,其中,碱金属氢化物为氢化锂、氢化钠、氢化钾、氢化铷或氢化铯;碱土金属氢化物为氢化铍、氢...

【专利技术属性】
技术研发人员:沈自才刘业楠田东波丁义刚白羽王志浩马子良
申请(专利权)人:北京卫星环境工程研究所
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1