当前位置: 首页 > 专利查询>福州大学专利>正文

具有三明治夹层结构Ag/CNTs/GO复合物的制备制造技术

技术编号:15114332 阅读:145 留言:0更新日期:2017-04-09 04:45
本发明专利技术公开了一种具有三明治夹层结构Ag/CNTs/GO复合物及其制备方法。在其夹层结构中,上下两层为氧化石墨烯薄层,中间为具有中空结构的碳纳米管层;其中,纳米银颗粒均匀地分散在氧化石墨烯和碳纳米管中。本发明专利技术方法简单易行,操作方便,易于控制,简单且环保;且所制备的具有三明治夹层结构的Ag/CNTs/GO复合物增强了石墨烯和碳纳米管对纳米银的协同固载能力,从而使得该纳米复合物具有很好的稳定性,提高了纳米银颗粒的分散性;同时对革兰氏阳性菌(金黄色葡萄球菌)和革兰氏阴性菌(大肠杆菌)等多种菌种均表现出较强的抑菌作用。

【技术实现步骤摘要】

本专利技术属于复合材料
,具体涉及了一种具有三明治夹层结构Ag/CNTs/GO复合物及其制备方法。
技术介绍
银及其化合物作为一类抑菌材料已被广泛应用于日常生活,纳米尺度的银粒子作为一种银纳米抑菌材料备受青睐。然而,银纳米颗粒容易团聚,在光照下容易氧化而降低抑菌性,这种不稳定性极大限制了其在医学领域的广泛应用。为了增加银纳米粒子的稳定性,人们设计了各种不同的载体(如大分子、沸石和碳材料)负载银纳米材料,直接将纳米银颗粒负载在载体材料上得到复合物,方法简单易行,且抑菌效果得到增强。因此,增大载体材料的负载表面积更有利于纳米银颗粒的负载,同时也有利于纳米复合物抑菌性能的提高。研究证明,一些载体材料甚至能和银纳米颗粒产生协同效应,增加其抑菌效果。目前,以石墨烯类材料为载体,负载银纳米颗粒收到大家广泛的关注。氧化石墨烯GO,除了具有极大的比表面积和高化学稳定性外,还具有规整的平面二维结构和优异的吸附能,这使其可以作为一个理想的载体担载银纳米颗粒和构建新型的抑菌体系。研究表明,氧化石墨烯具有良好的生物相容性,同时具有一定的抑菌性能,尤其适合作为抑菌剂的组成材料,在抑菌材料方面有着潜在应用。多巴胺作为一种生物材料,研究表明,其对蛋白质等多种物质具有较好的黏附性能。多巴胺在多种有机或无机材料界面上均可自聚形成聚多巴胺薄层,该多巴胺薄层具有很强的粘附性能。因此,在本专利技术中,以石墨烯和纳米银复合物为基础,通过多巴胺的黏附性能,将碳纳米管嵌入,形成具有三明治型夹层结构的纳米复合物。同时,利用氧化石墨烯表面丰富的极性官能团和多巴的黏附性能,将银纳米颗粒固定在碳纳米管和氧化石墨烯片层结构上,对银纳米颗粒起到了稳定和保护作用。本专利技术的制备方法增强了石墨烯和碳纳米管对纳米银的协同固载能力,从而使得该纳米复合物具有很好的稳定性和良好的抑菌性能,提高了纳米银颗粒的分散性,特别是其光照稳定性较纳米银有显著提高。进一步的研究表明,当这种复合材料制备成膜之后,依然可以发挥其强抑菌性,这为医学和环境应用奠定了基础。
技术实现思路
本专利技术的目的在于提供一种具有三明治夹层结构Ag/CNTs/GO复合物及其制备方法,该制备方法条件温和、操作简便、易于控制,简单且环保;本专利技术的制备方法增强了石墨烯和碳纳米管对纳米银的协同固载能力,从而使得该纳米复合物具有很好的稳定性;提高了纳米银颗粒的分散性,特别是其光照稳定性较纳米银有显著提高;同时对革兰氏阳性菌(金黄色葡萄球菌)和革兰氏阴性菌(大肠杆菌)等多种菌种均表现出较强的抑菌作用。为了实现上述目的,本专利技术的技术方案如下:一种具有三明治夹层结构Ag/CNTs/GO复合物的制备方法,包括以下步骤:1)配制一定浓度的多巴胺盐酸盐(DPA)溶液,加入一定量的碳纳米管(CNTs),第一次室温磁力搅拌;2)将搅拌所得产物经离心处理,蒸馏水洗净后,加入到氧化石墨烯(GO)水溶液中,第二次室温磁力搅拌;3)随后在氧化石墨烯水溶液中依次加入一定量的硝酸银溶液和硼氢化钠溶液,第三次室温搅拌;4)将产物离心处理,之后分别水洗和醇洗3次,室温真空干燥24h即得到具有三明治夹层结构的银纳米颗粒/碳纳米管/氧化石墨烯纳米复合物(Ag/CNTs/GO);所述DPA溶液浓度为1mg/ml-5mg/ml;所述碳纳米管质量为0.1g-1g;所述第一次室温磁力搅拌时间为15h-20h;所述GO溶液浓度为2mg/ml-10mg/ml;所述第二次室温磁力搅拌时间为1h-3h;所述硝酸银溶液和硼氢化钠溶液的浓度分别为1mM-5mM和1mM-5mM;所述第三次室温磁力搅拌时间为20h-30h。一种如上所述的制备方法制得的具有三明治夹层结构Ag/CNTs/GO复合物,在其夹层结构中,上下两层为氧化石墨烯薄层,中间为具有中空结构的碳纳米管层;其中,纳米银颗粒均匀地分散在氧化石墨烯和碳纳米管中,具有较好的抑菌性能;对革兰氏阳性菌(金黄色葡萄球菌)和革兰氏阴性菌(大肠杆菌)等多种菌种均表现出较强的抑菌作用,有较为广阔的发展前景和应用空间。本专利技术的有益效果在于:1)本专利技术的制备方法对产物的形貌有很高的调控性;且原材料易得,无催化剂,价格低廉;本专利技术工艺简单,易于操作,制备条件温和,产物形貌稳定,且产物处理方便简洁,适合于中等规模工业生产;2)本专利技术的制备方法中,增强了石墨烯和碳纳米管对纳米银的协同固载能力,从而使得该纳米复合物具有很好的稳定性;提高了纳米银颗粒的分散性,特别是其光照稳定性较纳米银有显著提高;同时对革兰氏阳性菌(金黄色葡萄球菌)和革兰氏阴性菌(大肠杆菌)等多种菌种均表现出较强的抑菌作用,有较为广阔的发展前景和应用空间。附图说明图1为实施例1中的产物在200nm的倍数下得到的TEM图像。图2位实施例1中的产物的XPS谱图。具体实施方式本专利技术用下列实施例来进一步说明本专利技术,但本专利技术的保护范围并不限于下列实施例。实施例1(1)配制浓度为1mg/ml的多巴胺盐酸盐(DPA)溶液100ml,加入0.1g的碳纳米管(CNTs),第一次室温磁力搅拌15h;(2)将搅拌所得产物经离心处理,蒸馏水洗净,加入到250ml浓度为2mg/ml氧化石墨烯(GO)水溶液中,第二次室温磁力搅拌1h;(3)在(2)所得溶液中依次加入80ml1mM的硝酸银溶液、80ml1mM的硼氢化钠溶液,第三次室温搅拌20h;(4)将搅拌产物离心处理,之后分别水洗和醇洗3次,室温真空干燥24h即得到具有三明治夹层结构的银纳米颗粒/碳纳米管/氧化石墨烯纳米复合物(Ag/CNTs/GO)。实施例2(1)配制浓度为2mg/ml的多巴胺盐酸盐(DPA)溶液100ml,加入0.3g的碳纳米管(CNTs),第一次室温磁力搅拌16h;(2)将搅拌所得产物经离心处理,蒸馏水洗净,加入到250ml浓度为4mg/ml氧化石墨烯(GO)水溶液中,第二次室温磁力搅拌1.5h;(3)在(2)所得溶液中依次加入80ml2mM的硝酸银溶液、80ml2mM硼氢化钠溶液,第三次室温搅拌22h;(4)将搅拌产物离心处理,之后分别水洗和醇洗3次,室温真空干燥24h即得到具有三明治夹层结构的银纳米颗粒/碳纳米管/氧化石墨烯纳米复合物(Ag/CNTs/GO)。实施例3(1)配制浓度为3mg/ml的多巴胺盐酸盐(DPA)溶液100ml,加入0.5g的碳纳米管(CNTs),第一次室温磁力搅拌17h;(2)将搅拌所得产物经离心处理,蒸馏水洗净,加入到250ml浓度为6mg/ml氧化石墨烯(GO)水溶液中,第二次室温磁力搅拌2h;(3)在(2)所得溶液中依次加入80ml3mM的的硝酸银溶液、80ml3mM的硼氢化钠溶液,第三次室温搅拌24h;(4)将搅拌产物离心处理,之后分别水洗和醇洗3次,室温真空干燥24h即得到具有三明治夹层结构的银纳米颗粒/碳纳米管本文档来自技高网
...

【技术保护点】
一种具有三明治夹层结构Ag/CNTs/GO复合物,其特征在于:所述的复合物具有三明治夹层结构;上下两层为氧化石墨烯薄层,中间为具有中空结构的碳纳米管层;其中,纳米银颗粒均匀地分散在氧化石墨烯和碳纳米管中。

【技术特征摘要】
1.一种具有三明治夹层结构Ag/CNTs/GO复合物,其特征在于:所述的复合物具有三明治夹层结构;上下两层为氧化石墨烯薄层,中间为具有中空结构的碳纳米管层;其中,纳米银颗粒均匀地分散在氧化石墨烯和碳纳米管中。
2.一种如权利要求1所述的具有三明治夹层结构Ag/CNTs/GO复合物的制备方法,其特征在于:包括如下步骤:
(1)配制一定浓度的多巴胺盐酸盐溶液,加入一定量的碳纳米管,第一次室温磁力搅拌;
(2)将搅拌所得产物经离心处理,蒸馏水洗净之后,加入到氧化石墨烯水溶液中,第二次室温磁力搅拌;
(3)在(2)所得溶液中依次加入硝酸银溶液、硼氢化钠溶液,第三次室温搅拌;
(4)将产物离心处理,之后分别水洗和醇洗3次,室温真空干燥24h,得到三明治夹层结构的银纳米颗粒/碳纳米管/氧化石墨烯纳米复合物。
3.根据权利要求2所述的具有三明治夹层结构Ag/CNTs/GO复合物的制备方法,其特征在于:步骤(1)中多巴胺盐酸盐溶液的浓度为1mg/ml-5mg/ml。
4.根据权利要求2所述的具有三明治夹层结构Ag/CNTs/GO复合物的制备方法,...

【专利技术属性】
技术研发人员:李建华王双双张德彬闫邦锋张其清
申请(专利权)人:福州大学
类型:发明
国别省市:福建;35

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1