氧化钕和氧化钇共稳定的四方氧化锆多晶陶瓷及制备方法技术

技术编号:1477787 阅读:157 留言:0更新日期:2012-04-11 18:40
本发明专利技术涉及一种氧化钕和氧化钇共稳定的四方氧化锆多晶(Nd,Y)-TZP)陶瓷及制备方法,其特征在于:同时使用氧化钕和氧化钇两种氧化物作为稳定剂,采用包裹技术制备两种稳定剂共同包裹的纳米氧化锆粉体,合成的粉体在空气中无压烧结,获得具有优良的力学性能的四方氧化锆多晶陶瓷。采用的原料是质量百分比不小于99.9的六水合硝酸钕(Nd(NO↓[3])↓[3].6H↓[2]O)、六水合硝酸钇(Y(NO↓[3])↓[3].6H↓[2]O)和平均晶粒尺寸小于100纳米的单斜氧化锆粉,最终获得的TZP陶瓷中氧化钕摩尔百分比在1.0-2.0范围内,氧化钇摩尔百分比在1.0-1.5范围内。

【技术实现步骤摘要】

本专利技术涉及的是一种氧化钕和氧化钇共稳定的四方氧化锆多晶((Nd,Y)-TZP)陶瓷及制备方法。更确切的说是提供一种以六水合硝酸钕(Nd(NO3)3·6H2O)、六水合硝酸钇(Y(NO3)3·6H2O)和单斜氧化锆粉为原料,采用包裹技术制备粉体,通过无压烧结达到致密化获得的具有优良力学性能的(Nd,Y)-TZP陶瓷及其制备方法,属于氧化锆基陶瓷领域。
技术介绍
氧化锆是一种重要的高性能陶瓷材料,具有优良的力学和电学性能,在结构陶瓷和功能陶瓷两个方面都有着广泛的应用前景。但是在1975年之前,材料工作者把氧化锆用作结构或工程陶瓷的兴趣还是很有限的,大部分应用还只限于耐火材料方面。这是因为氧化锆在冷却过程中会发生由四方→单斜的相变,该相变伴随着3-5%的体积变化,足以使材料产生严重开裂,因此制造大的纯氧化锆块体材料是不可能的。1975年,Garvie等在Nature杂志上发表了题为“Ceramic Steel?”的文章,第一次提出了可利用ZrO2中的四方→单斜相变来改善氧化锆陶瓷的强度和韧性,这一理论的提出导致了工程陶瓷研究的重大发展,并被应用于其他陶瓷基体。此后,氧化锆陶瓷材料的应用才得到极大的扩展。研究表明,添加某些金属氧化物能避免四方相向单斜相的相变,并且高温立方相和四方相能稳定在较低温度。这些金属氧化物和氧化锆生成固溶体,在阴离子亚晶格引入缺位产生高离子电导,并稳定四方相和立方相。最常用的稳定剂是CaO,MgO,CeO2,Y2O3等。氧化钇稳定的四方氧化锆多晶体(Y-TZP)陶瓷具有优良的力学性能,特别是较高的断裂韧性,是一种重要的结构陶瓷材料。然而,当Y-TZP陶瓷长时间暴露在潮湿或水热环境中时,会发生自发的四方相到单斜相的相变,由此导致材料性能的下降,即所谓的低温老化(low-temperature degradation,LTD)现象。尽管通过增加Y2O3含量和降低平均晶粒尺寸,这种老化可以被抑制,但是由于应力诱发马氏体相变的缺乏使材料的断裂韧性降低。由此可见,仅用Y2O3作为稳定剂的TZP陶瓷材料,其机械性能具有一定的局限性。研究表明,通过掺入其它稳定剂,可以调整Y-TZP陶瓷的性能,某些情况下能获得比单一Y2O3稳定具有更优越性能的ZrO2材料。Boutz等报道加入CeO2到Y-TZP中可以防止LTD发生,并且材料可以保持比较高的断裂韧性(7-9MPa·m1/2)。加入TiO2也能够在保持高断裂韧性(8-11MPa·m1/2)的同时大大降低LTD的程度。虽然添加其它稳定剂对Y-TZP陶瓷性能的影响是复杂的,并不总能获得优良的性能,但是通过对另一稳定剂的选择和制备工艺的控制,存在着获得具有优化性能的TZP陶瓷材料的可能性。本专利技术的基本构思是Nd与Ce同属稀土元素,在周期表中的位置接近,Nd3+的离子半径大小也与Ce4+相近,此外,CeO2在烧结过程中容易还原产生Ce3+,而Nd2O3则不会发生这种还原现象。除稳定剂种类和组分的选择之外,粉体的制备工艺及其性能对烧结陶瓷的最终性能也有着重大的影响。因此,本专利技术的专利技术人在选择Nd2O3和Y2O3作为稳定剂同时,利用包裹技术制备了Nd2O3和Y2O3共同包裹的ZrO2纳米粉体,通过无压烧结获得致密的(Nd,Y)-TZP陶瓷材料。
技术实现思路
本专利技术的目的在于提供一种具有优良力学性能的氧化钕和氧化钇共稳定的四方氧化锆多晶((Nd,Y)-TZP)陶瓷及制备方法。本专利技术的目的是通过下列方式实施的以质量百分比不小于99.9的六水合硝酸钕(Nd(NO3)3·6H2O)、六水合硝酸钇(Y(NO3)3·6H2O)和平均晶粒尺寸小于100纳米的单斜氧化锆粉为起始原料,采用包裹技术合成氧化钕和氧化钇共同包裹的氧化锆纳米粉体,通过无压烧结获得致密的(Nd,Y)-TZP陶瓷。具体地说(1)作为稳定剂的氧化钕和氧化钇分别按照氧化钕(Nd2O3)摩尔百分比在1.0-2.0范围内,氧化钇(Y2O3)摩尔百分比在1.0-1.5范围内设计组分。优先选择组分是作为稳定剂的Nd2O3和Y2O3的摩尔百分数分别为1.5。(2)原料包括质量百分比不小于99.9的六水合硝酸钕(Nd(NO3)3·6H2O)、六水合硝酸钇(Y(NO3)3·6H2O)和平均晶粒尺寸小于100纳米的单斜氧化锆粉。按照上述(1)的组成配比选择适量相应的化合物。(3)粉体的合成分别配制Nd3+和Y3+浓度为0.05-0.20mol/L的水溶液,取适量溶液在聚乙烯容器中,以氧化钇稳定的四方多晶氧化锆球为球磨介质,与氧化锆纳米粉在无水乙醇中混合并球磨20-30小时。球磨后用旋转蒸发器干燥悬浮液,获得包裹粉体的前驱物。前驱物于750-850℃在空气中煅烧0.5-2小时,热分解后的粉体在聚乙烯容器中,加入氧化钇稳定的四方多晶氧化锆球为球磨介质,在无水乙醇中球磨20-30小时。球磨后用旋转蒸发器干燥悬浮液,获得氧化钕和氧化钇共同包裹的氧化锆纳米粉体。(4)氧化钕和氧化钇共同包裹的氧化锆纳米粉体经冷等静压或干压成型,成型压力为1-2T/cm2,在空气中于1400-1500℃无压烧结,烧结时间控制在2-5小时范围内,成型得到致密的(Nd,Y)-TZP陶瓷。本专利技术的优点是(1)粉体的合成工艺简单,成本低,不需要复杂的设备,容易扩大规模生产。(2)合成的粉体的相组成是完全单斜相,稳定剂包裹在纳米颗粒的表面,具有高烧结活性,有利于陶瓷的致密化。(3)通过对烧结时间的控制,可使致密TZP陶瓷材料的硬度和断裂韧性同时达到最大值,获得具有优良力学性能的(Nd,Y)-TZP陶瓷材料。附图说明图1组成为1.5mol%Nd2O3-1.5mol%Y2O3-ZrO2,在1450℃于空气中通过不同保温时间无压烧结的(Nd,Y)-TZP陶瓷的XRD图谱和相应的SEM形貌(a)2小时(b)3小时(c)4小时(d)5小时图2组成为1.5mol%Nd2O3-1.5mol%Y2O3-ZrO2,在1450℃于空气中通过不同保温时间无压烧结的(Nd,Y)-TZP陶瓷的力学性能随烧结时间的变化,横坐标为保温时间(小时),左纵坐标为HV30(30公斤载荷下的维氏硬度),单位为GPa,右纵坐标为KIC(断裂韧性),单位为MPa·m1/2图3组成为1.0mol%Nd2O3-1.0mol%Y2O3-ZrO2的包裹粉体的XRD图谱图4组成为1.0mol%Nd2O3-1.0mol%Y2O3-ZrO2的包裹粉体的SEM形貌图5具体工艺流程图具体实施方式实施例1 以质量百分比不小于99.9的六水合硝酸钕(Nd(NO3)3·6H2O)、六水合硝酸钇(Y(NO3)3·6H2O)和单斜氧化锆粉(平均晶粒尺寸小于100纳米)为原料,设计最终获得TZP陶瓷中氧化钕(Nd2O3)摩尔百分比为1.5,氧化钇(Y2O3)摩尔百分比为1.5。按照上述组成配比选择适量相应的化合物,分别配制Nd3+和Y3+浓度为0.1mol/L的水溶液,取适量溶液在聚乙烯容器中,以Y-TZP球为球磨介质,与平均晶粒尺寸小于100纳米的单斜氧化锆粉在无水乙醇中混合并球磨24小时。球磨后用旋转蒸发器干燥悬浮液,获得包裹粉体的前驱物。前驱物于800℃在空气中煅烧1小时,热分解后的粉体在聚乙烯容器中,加入Y-TZ本文档来自技高网
...

【技术保护点】
一种氧化钕和氧化钇共稳定的四方氧化锆多晶((Nd,Y)-TZP)陶瓷,其特征在于作为稳定剂的氧化钕的摩尔百分数为1.0-2.0,氧化钇的摩尔百分数为1.0-1.5。

【技术特征摘要】

【专利技术属性】
技术研发人员:许涛王佩玲约瑟夫务伦杰奥默范德比斯特
申请(专利权)人:中国科学院上海硅酸盐研究所
类型:发明
国别省市:31[中国|上海]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1