具有受控缺陷结构热障涂层制造技术

技术编号:14185672 阅读:138 留言:0更新日期:2016-12-14 16:31
氧化钇稳定的氧化锆(YSZ)颗粒(40)在金属基板(24)上形成一个热障层(58)。YSZ颗粒具有多孔的内部(52,54)和一个完全熔化和凝固的外壳(50)。热障层孔隙度可以大于12%,包括颗粒内孔隙与颗粒间的间隙。颗粒间的间隙可以大于5微米。热障层具有弹性迟滞,且平均弹性模量为15‑25GPa。粘结层(44A、44B)可以施加在衬底和隔热层之间。粘结层可具有在基板的第一致密MCrAlY层(44A)和在第一个MCrAlY层上的第二粗糙、多孔的MCrAlY层(44B),粘结层扩散结合彼此和衬底。

Thermal barrier coating with controlled defect structure

Yttria stabilized zirconia (YSZ) particles (40) form a thermal barrier layer (58) on a metal substrate (24). The YSZ particles have a porous interior (52, 54) and a fully melted and solidified shell (50). The porosity of thermal barrier layer can be more than 12%, including the gap between particles and particles. The gap between particles can be greater than 5 microns. The thermal barrier layer with elastic hysteresis, and the average elastic modulus of 15 25GPa. The bonding layer (44A, 44B) can be applied between the substrate and the insulating layer. The bonding layer may have a first dense MCrAlY layer (44A) on the substrate and a second rough, porous MCrAlY layer (44B) on the first MCrAlY layer, the bonding layer being diffused and bonded to each other and the substrate.

【技术实现步骤摘要】
【国外来华专利技术】
本专利技术涉及热障涂层,尤其是在燃气涡轮发动机的热气体流动路径表面的涂层。技术背景热障涂层(TBCs)用来在涡轮发动机的热气流元件提供热保护。除了较低的热电导率,这些涂层要求顺从性,意味着弹性或其他耐应力性,为了承受循环的热膨胀应力、振动和粒子的影响。热障涂层需要较强的附着力。由于陶瓷的耐火性能,他们通常是由陶瓷材料如氧化钇稳定的氧化锆(YSZ)制备。。然而,陶瓷涂层不易粘附于金属表面,所以通常在金属基板和涂层之间施加一种材料如MCrAlY粘结层(M为金属,CR=铬,铝,铝,Y=Y)是。MCrAlY抗氧化温度高,并与金属合金基体和陶瓷涂层兼容。TBC可以应用以小于全密度进行施加以降低热导率。然而,目前的TBCs在服务过程中致密化逐渐接近全密度。这是由于陶瓷层片彼此紧密配合,导致片间(内片)间距很小,在服役过程中经烧结可接近。由于片界面消失;TBC僵化并失去抵抗热循环过程中发生的应变的能力。这导致剥落。绝对的开裂,使热气体直接到达粘结层,降低其寿命。由于片内间距降低热导率,当他们接近时,电导率增大。已经提出了各种方法来解决这个问题,包括TBC空心陶瓷球中的夹杂,TBC的柱状开裂和通过分割在表面开槽提供顺从。然而,TBC材料仍然可以长时间烧结,从而增加其导电性,降低其抗剥落。可以使用延迟声子传播的材料,如低κ钆,,但他比氧化钇稳定的氧化锆昂贵。附图说明本专利技术参照下面的附图所示的描述进行解释:图1是现有技术中已知的氧化钇稳定的氧化锆多孔颗粒的显微图像。图2是本专利技术中的一种热喷涂系统和工艺过程的流程图。图3是现有技术的热障涂层的概念视图。图4是现有热障涂层在操作性加热前的截面显微照片。图5是现有的热障涂层加热到1400℃10小时后截面的显微照片。图6个显示了本专利技术的一个实施例具有坚实的外壳多孔颗粒的截面图。图7是本专利技术的一个实施例一个热障涂层系统概念视图。图8是本专利技术的一个实施例的热障涂层系统一个截面显微照片。图9是从本专利技术的一个实施例的应力/应变试验图,显示了本专利技术的热障涂层与现有技术相比的弹性滞后。
技术实现思路
专利技术人专利技术了一种,以较低的费用减少了热传导过程、提高依从性、寿命长的特殊的结构的热障涂层。这是通过具有粒子内(内部)空的孔隙率YSZ颗粒为开始实现,然后使用仅熔化颗粒外表面的喷涂参数热喷涂这些颗粒到到基体的表面。这保留了颗粒内部的孔隙。它也通过减少片之间的平均长径比比完全融化层片增加了颗粒间的空隙。图1是通过集聚和/或其他工艺形成的YSZ粉体提供具有内部孔隙的颗粒19的显微照片。图2说明了一种热喷涂系统20,用于在基板24制备陶瓷热障涂层的22,通过注入26陶瓷粉末原料储料罐28,如YSZ到热喷射流30。等离子枪32可用于生产热射流。基板24的温度在喷涂过程中可由温度控制单元32控制。喷涂参数控制器34可执行控制逻辑,可以输入用户参数,来控制喷射过程,包括载气36的速率和温度,电力+-,和原料进料率38,生产与本专利技术的内容一致所需的部分熔化的颗粒40的粉末。图3说明了现有技术中基板24上的热障涂层42。粘结涂层44如MCrAlY施加到基材上,然后一层陶瓷层如YSZ是通过热喷涂施加。这融化了陶瓷颗粒并且将其粘结在基板上,形成较薄的层片46a-c,高度顺从先前的片层,与相邻层片的一致性高,内部各层密度高,和层间间隙48小。图4是通过热喷涂喷涂YSZ颗粒完全熔化传统的YSZ热障涂层的显微照片。层间距通常为1微米或更小。图5是图4的TBC在1400℃加热10小时后的显微照片,显示在操作温度水平下烧结导致的合并和致密化。图6说明了图2所示的本专利技术的一个实施例的热喷涂30的陶瓷粒子40。喷涂参数选取使仅熔化外层或颗粒的壳50,留下一个内部52不熔化和多孔54。粒子40可以10-50%的融化,或特别是10-25%体积被熔化。为了实现有限范围融化,基于热喷涂中能量密度的控制方法是有用的。YSZ粉体从不同厂商、来自同一个供应商不同批次,可以具有不同的基本质量密度等性能。然而,专利技术人发现,熔体比例是能量密度的线性函数,在热喷涂工艺中给定的粉末质量的进给速率时,可表示为瓦/载气流量升当。为调整一批新的粉末喷涂,可以进入收集罐和小样本的粉末进行测试喷涂,使用能量密度如500瓦/升。然后收集的颗粒可评估熔体的百分比,如果需要的话能量密度可以调整。结果至少大部分的喷涂粒子,或特别是超过80%,具有理想的熔化率,外壳50基本上是无孔的,这意味着它有大于95%的理论密度,而内部是多孔的,这意味着它有小于90%的理论密度。熔化的比例可能会利用阿基米德原理来评估测试喷涂前、后的粉末密度,计算所得的致密化率。或者,熔化率可以采用测试喷涂粒子的样品的断面显微照片进行生动地评价。图7描述了在基板24上的热障涂层系统56显示本专利技术的一个实施例。材料如MCrAlY粘结层系统44A-B可以施加两层,第一层是高度密集44A,具有至少95%的质量密度,和粗糙化、密度较小第二层44B。例如,层44A可能由高速氧-燃料工艺制备,以及层44B可以采用气体等离子喷涂制备,粗糙的反射涂层。施加后,粘结层系统44A-B进行充分加热处理,使两层44A,44B之间,和基板24之间扩散连接。热障层58通过热喷涂工艺,如空气等离子喷涂在粗糙粘结涂层44B上形成。控制熔化使粒子40部分可锻。冲击力可能会导致部分平坦化,但颗粒40不会像完全熔化的片层那样尽可能的紧密或融合完全顺从彼此。这就导致粒子间较大间隙48,其平均间隙尺寸(如间隙宽度)大于大于5微米或特别是10-40微米或20-30微米。这与现有技术的差距平均为1微米或更小形成对比。隔热层58的孔隙率大于12%或特别14-17%,包括其粒子孔隙度54和颗粒间的间隙48。粒子比现有技术具有的更小的接触面积和连贯性,这会导致更多的相对运动,包括一些颗粒某些表面之间的滑动。与现有技术相比,本文结合涂层系统56的微结构特征提供了低导热性、高顺从性,包括增加的弹性;最小的烧结;缓解裂纹扩展;可忽略或减少剥落。图8显示了本专利技术的一个实施例的热障涂层系统56显微图像,包括粗糙的粘结层44B,和具有控制的缺陷包括层间间隙48的隔热层58。图9显示了在本专利技术的一个实施例的热屏障系统的弹性滞后环,是画在线性/线性单元的应力/应变图。在一个给定的应力范围SR内,热障起步在开始形状60,沿第一应力/应变曲线64达到一个相对扭曲的形状62。应力消除后,热屏障沿着不同的应力应变曲线66返回到其开始的形状。完全熔化的片层和操作烧结的现有TBC具有有限的线性弹性部分74,和非线性塑性部分76,最终剥落的应力应变曲线。这个现有的弹性模量大于30GPa。相反,在操作服务后的现有TBC弹性模量总体可能在约15-25GPa范围内或尤其是16-20GPa,基于线68。迟滞大小定义为应力/应变曲线64、66之间的分量70除以开始点和结束点60、62之间的距离68,。更详细的描述如下:热障层上的线性/线性单元的应力/应变图上具有弹性滞后,其中第一64和第二66应力应变曲线的每个跨度在图上的起始点60和终结点62之间,形成一个环64,66,其中,两个应力应变曲线的距离70除以开始点和结束点60、62之间的距离68,得出了一个迟滞的本文档来自技高网
...
<a href="http://www.xjishu.com/zhuanli/24/201480063096.html" title="具有受控缺陷结构热障涂层原文来自X技术">具有受控缺陷结构热障涂层</a>

【技术保护点】
热障涂层系统包括:在基板上的粘结层;在粘结层上多个陶瓷颗粒形成的热障层,所述陶瓷颗粒包含多孔的内部部分和非多孔的外壳。

【技术特征摘要】
【国外来华专利技术】2013.11.18 US 14/0826611.热障涂层系统包括:在基板上的粘结层;在粘结层上多个陶瓷颗粒形成的热障层,所述陶瓷颗粒包含多孔的内部部分和非多孔的外壳。2.权利要求1中的热障层,其中至少有80%的颗粒的外壳包括10-50%的颗粒体积。3.权利要求1中的热障层1,其中至少有80%的颗粒的外壳包括10-25%的粒子的体积,和粒子的纵横比的范围从1-4。4.权利要求1中的热障层,其中热屏障层孔隙率大于12%,包括多个颗粒之间的孔隙和隔热层内部颗粒孔隙率。5.权利要求1中的热障层,其中隔热层在线性/线性单元的应力/应变图中具有弹性滞后,其中第一和第二应力/应变曲线图中的开始点和图中结束点之间的每个跨度,形成一个环,两个应力/应变曲线之间的距离除以开始和结束点之间的距离给出了滞环的大小范围为0.05~0.10,其中两应力/应变曲线之间的距离是沿从开始和结束点之间的中点的垂直线测量的。6.权利要求1中的热障涂层系统,其中热障层具有弹性迟滞,平均弹性模量为15-25GPa。7.权利要求1中的热障涂层系统,其中隔热层具有平均大于5微米的颗粒间隙宽度。8.权利要求1中的热障涂层系统,其中粘结层包括在衬底上的第一层,在第一个MCrAlY层的第二MCrAlY层,其中第二MCrAlY层具有较低的密度和比第一MCrAlY层更高的粗糙度,与第一和第二MCrAlY层扩散连接彼此和基板。9.热障涂层系统包括:多个氧化钇稳定的氧化锆(YSZ)粒子在衬底上形成热障层,其中至少80%的YSZ颗粒包括多孔的内部部分和完全熔化和凝固的外壳;其中,所述至少80%的颗粒,外壳包括10-50%的颗粒体积,平均颗粒的纵横比为1~4;其中热障层的孔隙率大于12%,包括颗粒自身的孔隙及其颗粒间的孔隙率;和其中热障层在15-25GPa平均弹性模量具有弹性滞后。10.权利要求9中的热障涂层系统,还包括衬底和热障层之间的粘结层,其中粘结层包括在衬底上的第一MCrAlY层,在第一MCrAlY层的第二MCrAlY层,其中第二MCrAlY层具有较低的密度和比第一MCrAlY层更高的表面粗糙度,以及第一和第二MCrAlY层扩散连接彼此和基板。11.权利要求9中的热障涂层系统,其中热障层包括在一定压力范围内...

【专利技术属性】
技术研发人员:W·L·里格斯G·W·斯万森H·拉默斯
申请(专利权)人:西门子能源公司西门子公司
类型:发明
国别省市:美国;US

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1