当前位置: 首页 > 专利查询>吉林大学专利>正文

一种数字式程控恒流源制造技术

技术编号:14743968 阅读:78 留言:0更新日期:2017-03-01 19:44
本发明专利技术的一种数字式程控恒流源属于电子设备技术领域,结构有输出模块(9)和前面板(11),其特征在于,结构还有单片机模块(1)、显示模块(2)、指示灯模块(3)、按键模块(4)、编码器模块(5)、PC程控模块(6)、软启动模块(7)、数模转换模块(8)和采样监测模块(10)。本发明专利技术基于单片机控制,具有功能丰富、升级方便、可程控等优点,且本发明专利技术还有过热报警、低压报警和软启动等功能,安全性高,使用场合广。

【技术实现步骤摘要】

本专利技术属于电子设备
,特别涉及一种数字式程控恒流源装置。
技术介绍
恒流源在LED驱动、激光器驱动、传感器驱动、各种辉光放电光源驱动等很多领域内都有重要的应用。在某些特定应用领域内,恒流源输出电流的稳定度至关重要,如在激光器驱动应用中,微小的电流变化将导致输出光功率和激射波长的极大变化,这些变化直接危及器件的安全使用。常用的提高电流稳定度的措施包括:1、利用磁饱和电抗器的非线性磁化原理提高稳定性;2、在负载回路中串联大电阻(相对于负载电阻);3、通过负反馈网络实现电流自动稳定。在这几种方案中,第一种方案受器件本身的影响较大,对稳定度的提高有限;第二种方案由于在负载回路中串联了大电阻,可有效地减小负载电阻的变化对输出电流的影响,但由于负载回路中大电阻的存在,使得在电源电压一定的情况下输出很小的电流,一般只能在毫安级,而且大部分电压都降在了大电阻上,也使得效率极低;第三种方案由于负反馈网络本身具有的自动调整功能,可以使输出电流自动稳定,而不受负载变化的影响,因此是目前提高电流稳定度的最有效的方法,但目前已公开的技术中,一般都是采取单一的线性反馈网络,这种方案的缺点在于:首先,一旦反馈网络出现故障,系统将处于开环工作状态,输出电流将急剧增大,很容易损坏负载和电路本身;其次,使用场合受到限制,只能应用在负载对电流是线性响应的场合,在某些特定场合下,如负载对电流的响应存在延迟或超前的情况,这种基于单一线性反馈网络的恒流源的恒流效果会大打折扣。与本专利技术最接近的现有技术是本课题组于2015年申请的专利技术专利“一种基于双环负反馈的恒流源装置”,申请号为201511009383X,该申请利用双环负反馈的方式结合PID自动控制技术,有效地提高了恒流源的稳定性,尤其解决了传统技术中基于单一反馈网络的恒流源对非线性负载响应问题。但专利201511009383X所公开的技术完全是基于模拟电路实现的,这种电路存在诸多缺点,功能比较单一,只能单机工作,无法利用微机进行程控,而且一旦发现系统存在不足需要升级换代时,只能重新设计及制作硬件电路,使得系统的可扩展及灵活性受到极大的限制。另外,专利201511009383X在系统的安全性方面还存在一定的不足:1、系统没有电压监测模块,一旦负载过小或短路,整个电源电压几乎全部会降在内部的功率管两端,在功率管上产上较大功率,从而烧坏功率管;2、系统没有温度监测模块,当系统使用不当或某些不可预测因素导致电路内容主要器件过热时,不能及时采取有效的保护措施;3、系统启动输出电流时,输出电流直接达到设定值,这种陡峭的电流上升沿会对负载造成上电冲击,降低负载的使用寿命。因此,目前已公开的恒流源技术还需要进一步完善。
技术实现思路
本专利技术要解决的技术问题是,克服
技术介绍
中的不足,提供一种基于单片机控制的具有程控功能的数字式恒流源。本专利技术的技术问题通过以下技术方案解决:一种数字式程控恒流源,结构有输出模块9和前面板11,其特征在于,结构还有单片机模块1、显示模块2、指示灯模块3、按键模块4、编码器模块5、PC程控模块6、软启动模块7、数模转换模块8和采样监测模块10;所述的单片机模块1的结构为,单片机U1的电源端和接地端分别接+5V电源和数字地,电源端还通过电容C1接数字地,端口X1和端口X2之间接晶振Y1,端口X1和端口X2还分别通过电容C2和电容C3接数字地,端口P00~端口P07分别通过电阻R1~电阻R8接+5V电源,所述的单片机U1的型号是STC89C51。所述的显示模块2的结构为,显示屏U2的端口D0~端口D7分别接单片机U1的端口P00~端口P07,显示屏U2的端口EN、端口R/W和端口RS分别接单片机U1的端口P10、端口WR和端口RD,显示屏U2的端口VL和端口BL-接数字地,端口BL+接滑动变阻器P1的滑线端,端口VDD和端口VSS分别接+5V电源和数字地,端口VDD和端口VSS之间还接有电容C4,滑动变阻器W1的一端接+5V电源,另一端接数字地,所述的显示屏U2的型号为LCD1602;所述的指示灯模块3的结构为,电阻R15~电阻R20的一端分别接单片机U1的端口P11~端口P16,电阻R15~电阻R20的另一端分别接场效应管Q1~场效应管Q6的栅极,场效应管Q1~场效应管Q6的源极均接模拟地,漏极分别通过电阻R9~电阻R14接发光二极管D1~发光二极管D6的阴极,发光二极管D1~发光二极管D6的阳极均接+12V电源;所述的按键模块4的结构为,开关S1、开关S2的一端与电容C5、电容C6的一端均接数字地,开关S1的另一端和电容C5的另一端相连,同时接电阻R21的一端和施密特触发器U3A的输入端,电阻R21的另一端接+5V电源,开关S2的另一端和电容C6的另一端相连,同时接电阻R22的一端和施密特触发器U3B的输入端,电阻R22的另一端接+5V电源,施密特触发器U3A、施密特触发器U3B的输出端分别接单片机U1的端口P17和端口P20;所述的编码器模块5的结构为,旋转编码器Encoder1的1脚接电阻R23的一端、电容C7的一端和施密特触发器U3C的输入端,2脚接电阻R24的一端、电容C8的一端和施密特触发器U3D的输入端,3脚接数字地,电阻R23和电阻R24的另一端均接+5V电源,电容C7和电容C8的另一端均接数字地,施密特触发器U3C和施密特触发器U3D的输出端分别接单片机U1的中断口INT0和中断口INT1;所述的PC程控模块6的结构为,电平转换芯片U4的端口VCC和端口GND分别接+5V电源和数字地,端口V+通过电容C9接+5V电源,端口V-通过电容C10接数字地,端口C1+和端口C1-之间接电容C11,端口C2+和端口C2-之间接电容C12,端口T1IN和端口R1OUT分别接单片机U1的端口TXD和端口RXD,端口R1IN和端口T1OUT分别接D形接口J1的3脚和2脚,D形接口J1的5脚接数字地,所述的电平转换芯片U4的型号是MAX232,D形接口J1是一个9针D形接口;所述的软启动模块7的结构为,电阻R25的一端接单片机U1的端口P21,另一端接三极管T1的基极,三极管T1的发射极接+5V电源,集电极接电阻R26的一端、电容C13的一端和场效应管Q7的栅极,电阻R26和电容C17的另一端均接模拟地,场效应管Q7的源极接模拟地,漏极记为端口SoftStart,与输出模块9的端口SoftStart_in相连;所述的数模转换模块8的结构为,数模转换器U5的数字信号输入端口与单片机U1的端口P0相连,数模转换器U5的端口BYTE1/BYTE2与单片机U1的端口P22相连,数模转换器U5的端口CS与单片机U1的端口P23相连,数模转换器U5的端口WR1、端口WR2均与单片机U1的端口WR相连,端口XFER与单片机U1的端口RD相连,数模转换器U5的电源端接+5V电源,端口DGND接数字地,端口AGND和端口Iout2接模拟地,端口Rfb通过可调电阻W1接模拟地,端口Iout1接运放U6A的同相输入端,运放U6A的正负电源端分别接+12V电源和模拟地,反相输入端和输出端之间接可调电阻W2,反相输入端还通过电阻R27接模拟地,数模转换器U5的参考电压输入端Vref记为端口V本文档来自技高网
...
一种数字式程控恒流源

【技术保护点】
一种数字式程控恒流源,结构有输出模块(9)和前面板(11),其特征在于,结构还有单片机模块(1)、显示模块(2)、指示灯模块(3)、按键模块(4)、编码器模块(5)、PC程控模块(6)、软启动模块(7)、数模转换模块(8)和采样监测模块(10);所述的单片机模块(1)的结构为,单片机U1的电源端和接地端分别接+5V电源和数字地,电源端还通过电容C1接数字地,端口X1和端口X2之间接晶振Y1,端口X1和端口X2还分别通过电容C2和电容C3接数字地,端口P00~端口P07分别通过电阻R1~电阻R8接+5V电源,所述的单片机U1的型号是STC89C51;所述的显示模块(2)的结构为,显示屏U2的端口D0~端口D7分别接单片机U1的端口P00~端口P07,显示屏U2的端口EN、端口R/W和端口RS分别接单片机U1的端口P10、端口WR和端口RD,显示屏U2的端口VL和端口BL‑接数字地,端口BL+接滑动变阻器P1的滑线端,端口VDD和端口VSS分别接+5V电源和数字地,端口VDD和端口VSS之间还接有电容C4,滑动变阻器W1的一端接+5V电源,另一端接数字地,所述的显示屏U2的型号为LCD1602;所述的指示灯模块(3)的结构为,电阻R15~电阻R20的一端分别接单片机U1的端口P11~端口P16,电阻R15~电阻R20的另一端分别接场效应管Q1~场效应管Q6的栅极,场效应管Q1~场效应管Q6的源极均接模拟地,漏极分别通过电阻R9~电阻R14接发光二极管D1~发光二极管D6的阴极,发光二极管D1~发光二极管D6的阳极均接+12V电源;所述的按键模块(4)的结构为,开关S1、开关S2的一端与电容C5、电容C6的一端均接数字地,开关S1的另一端和电容C5的另一端相连,同时接电阻R21的一端和施密特触发器U3A的输入端,电阻R21的另一端接+5V电源,开关S2的另一端和电容C6的另一端相连,同时接电阻R22的一端和施密特触发器U3B的输入端,电阻R22的另一端接+5V电源,施密特触发器U3A、施密特触发器U3B的输出端分别接单片机U1的端口P17和端口P20;所述的编码器模块(5)的结构为,旋转编码器Encoder1的1脚接电阻R23的一端、电容C7的一端和施密特触发器U3C的输入端,2脚接电阻R24的一端、电容C8的一端和施密特触发器U3D的输入端,3脚接数字地,电阻R23和电阻R24的另一端均接+5V电源,电容C7和电容C8的另一端均接数字地,施密特触发器U3C和施密特触发器U3D的输出端分别接单片机U1的中断口INT0和中断口INT1;所述的PC程控模块(6)的结构为,电平转换芯片U4的端口VCC和端口GND分别接+5V电源和数字地,端口V+通过电容C9接+5V电源,端口V‑通过电容C10接数字地,端口C1+和端口C1‑之间接电容C11,端口C2+和端口C2‑之间接电容C12,端口T1IN和端口R1OUT分别接单片机U1的端口TXD和端口RXD,端口R1IN和端口T1OUT分别接D形接口J1的3脚和2脚,D形接口J1的5脚接数字地,所述的电平转换芯片U4的型号是MAX232,D形接口J1是一个9针D形接口;所述的软启动模块(7)的结构为,电阻R25的一端接单片机U1的端口P21,另一端接三极管T1的基极,三极管T1的发射极接+5V电源,集电极接电阻R26的一端、电容C13的一端和场效应管Q7的栅极,电阻R26和电容C17的另一端均接模拟地,场效应管Q7的源极接模拟地,漏极记为端口SoftStart,与输出模块(9)的端口SoftStart_in相连;所述的数模转换模块(8)的结构为,数模转换器U5的数据输入端口与单片机U1的端口P0相连,数模转换器U5的端口BYTE1/BYTE2与单片机U1的端口P22相连,数模转换器U5的端口CS与单片机U1的端口P23相连,数模转换器U5的端口WR1、端口WR2均与单片机U1的端口WR相连,端口XFER与单片机U1的端口RD相连,数模转换器U5的电源端接+5V电源,端口DGND接数字地,端口AGND和端口Iout2接模拟地,端口Rfb通过可调电阻W1接模拟地,端口Iout1接运放U6A的同相输入端,运放U6A的正负电源端分别接+12V电源和模拟地,反相输入端和输出端之间接可调电阻W2,反相输入端还通过电阻R27接模拟地,数模转换器U5的参考电压输入端Vref记为端口V_refer_in,接采样监测模块(10)中的端口V_refer,运放U6A的输出端记为端口I_ctr,与输出模块(9)中的端口I_ctr_in相连;所述的数模转换器U5的型号是DAC1232LCJ;所述的输出模块(9)的结构为,电阻R30的一端接+12V电源,另一端接电容C14的一端、可调电阻W3的一端、运放U6B的反相输入端和运放...

【技术特征摘要】
1.一种数字式程控恒流源,结构有输出模块(9)和前面板(11),其特征在于,结构还有单片机模块(1)、显示模块(2)、指示灯模块(3)、按键模块(4)、编码器模块(5)、PC程控模块(6)、软启动模块(7)、数模转换模块(8)和采样监测模块(10);所述的单片机模块(1)的结构为,单片机U1的电源端和接地端分别接+5V电源和数字地,电源端还通过电容C1接数字地,端口X1和端口X2之间接晶振Y1,端口X1和端口X2还分别通过电容C2和电容C3接数字地,端口P00~端口P07分别通过电阻R1~电阻R8接+5V电源,所述的单片机U1的型号是STC89C51;所述的显示模块(2)的结构为,显示屏U2的端口D0~端口D7分别接单片机U1的端口P00~端口P07,显示屏U2的端口EN、端口R/W和端口RS分别接单片机U1的端口P10、端口WR和端口RD,显示屏U2的端口VL和端口BL-接数字地,端口BL+接滑动变阻器P1的滑线端,端口VDD和端口VSS分别接+5V电源和数字地,端口VDD和端口VSS之间还接有电容C4,滑动变阻器W1的一端接+5V电源,另一端接数字地,所述的显示屏U2的型号为LCD1602;所述的指示灯模块(3)的结构为,电阻R15~电阻R20的一端分别接单片机U1的端口P11~端口P16,电阻R15~电阻R20的另一端分别接场效应管Q1~场效应管Q6的栅极,场效应管Q1~场效应管Q6的源极均接模拟地,漏极分别通过电阻R9~电阻R14接发光二极管D1~发光二极管D6的阴极,发光二极管D1~发光二极管D6的阳极均接+12V电源;所述的按键模块(4)的结构为,开关S1、开关S2的一端与电容C5、电容C6的一端均接数字地,开关S1的另一端和电容C5的另一端相连,同时接电阻R21的一端和施密特触发器U3A的输入端,电阻R21的另一端接+5V电源,开关S2的另一端和电容C6的另一端相连,同时接电阻R22的一端和施密特触发器U3B的输入端,电阻R22的另一端接+5V电源,施密特触发器U3A、施密特触发器U3B的输出端分别接单片机U1的端口P17和端口P20;所述的编码器模块(5)的结构为,旋转编码器Encoder1的1脚接电阻R23的一端、电容C7的一端和施密特触发器U3C的输入端,2脚接电阻R24的一端、电容C8的一端和施密特触发器U3D的输入端,3脚接数字地,电阻R23和电阻R24的另一端均接+5V电源,电容C7和电容C8的另一端均接数字地,施密特触发器U3C和施密特触发器U3D的输出端分别接单片机U1的中断口INT0和中断口INT1;所述的PC程控模块(6)的结构为,电平转换芯片U4的端口VCC和端口GND分别接+5V电源和数字地,端口V+通过电容C9接+5V电源,端口V-通过电容C10接数字地,端口C1+和端口C1-之间接电容C11,端口C2+和端口C2-之间接电容C12,端口T1IN和端口R1OUT分别接单片机U1的端口TXD和端口RXD,端口R1IN和端口T1OUT分别接D形接口J1的3脚和2脚,D形接口J1的5脚接数字地,所述的电平转换芯片U4的型号是MAX232,D形接口J1是一个9针D形接口;所述的软启动模块(7)的结构为,电阻R25的一端接单片机U1的端口P21,另一端接三极管T1的基极,三极管T1的发射极接+5V电源,集电极接电阻R26的一端、电容C13的一端和场效应管Q7的栅极,电阻R26和电容C17的另一端均接模拟地,场效应管Q7的源极接模拟地,漏极记为端口SoftStart,与输出模块(9)的端口SoftStart_in相连;所述的数模转换模块(8)的结构为,数模转换器U5的数据输入端口与单片机U1的端口P0相连,数模转换器U5的端口BYTE1/BYTE2与单片机U1的端口P22相连,数模转换器U5的端口CS与单片机U1的端口P23相连,数模转换器U5的端口WR1、端口WR2均与单片机U1的端口WR相连,端口XFER与单片机U1的端口RD相连,数模转换器U5的电源端接+5V电源,端口DGND接数字地,端口AGND和端口Iout2接模拟地,端口Rfb通过可调电阻W1接模拟地,端口Iout1接运放U6A的同相输入端,运放U6A的正负电源端分别接+12V电源和模拟地,反相输入端和输出端之间接可调电阻W2,反相输入端还通过电阻R27接模拟地,数模转换器U5的参考电压输入端Vref记为端口V_refer_in,接采样监测模块(10)中的端口V_refer,运放U6A的输出端记为端口I_ctr,与输出模块(9)中的端口I_ctr_in相连;所述的数模转换器U5的型号是DAC1232LCJ;所述的输出模块(9)的结构为,电阻R30的一端接+12V电源,另一端接电容C14的一端、可调电阻W3的一端、运放U6B的反相输入端和运放U7A的输出端,电容C14的另一端接运放U6B的输出端、电容C15的一端和电阻R31的一端,电容C15的另一端接模拟地,电阻R31的另一端接达林顿管TN1的基极,运放U6B的同相输入端接电阻R28的一端,并作为软启动输入端,记为端口SoftStart_in,接软启动模块(7)的端口SoftStart,电阻R28的另一端作为电流控制输入端,记为端口I_ctr_in,接数模转换模块(8)的端口I_ctr,可调电阻W3的另一端接电阻R32的一端,电阻R32的另一端接电阻R29的一端和运放U7A的反相输入端,电阻R29的另一端接模拟地,运放U7A的正负电源端分别接+12V电源和模拟地,达林顿管TN1的集电极接+12V电源,发射极作为输出端正极,记为端口Out+,运放U7A的同相输入端接电阻Rs1的一端,并作为输出端负极,记为端口Out-,电阻Rs1的另一端接模拟地;所述的采样监测模块(10)的结构为,模数转换器U11的端口CLK通过电容C16接数字地,端口CS接单片机U1的端口P24,端口RD、WR分别接单片机U1的端口RD、...

【专利技术属性】
技术研发人员:汝玉星田小建高博单江东吴戈高福斌李尚安明梁雪刘大恺马春阳
申请(专利权)人:吉林大学
类型:发明
国别省市:吉林;22

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1