一种单相无传感器无刷直流电机控制系统技术方案

技术编号:14665639 阅读:87 留言:0更新日期:2017-02-17 14:40
本实用新型专利技术涉及电机控制技术领域,具体涉及一种单相无传感器无刷直流电机控制系统,其包括:分别与电机的两相线相连接的H桥控制电路,该 H桥控制电路的输出端与电流传感器相接;电流传感器与主控制器相接,该主控制器上分别设有用于驱动H桥控制电路的第一、第二驱动电路,电机的两相线均与反电动势采样电路相连接,所述反电动势采样电路用于对单相无刷电机上的反电动势比较信号进行采集,并将该反电动势比较信号输送至主控制器中;所述主控制对第一驱动电路和第二驱动电路的开合状态进行控制;本实用新型专利技术能很好的适用于单相无刷电机,并能对单相无刷电机的转子位置进行精确的检测与控制,为单相无刷电机的推广与使用建立了一个良好的基础。

【技术实现步骤摘要】

本技术涉及电机控制
,具体涉及一种单相无传感器无刷直流电机控制系统。
技术介绍
单相直流无刷电机因其转速超高,且成本较三相直流无刷电机低廉,越来越受重视。单相直流无刷电机一般由永磁体转子、定子绕组和位置传感器组成,如图1所示。图1所示电机转子是两对磁极分别为1N、1S、2N、2S组成,对应绕组则由A、B、C、D四个定子绕组,其中A与D、B与C是同相位绕组,即通电时A与D产生相同磁极磁场,B与C产生另一个磁场。位置传感器一般是由霍尔器件组成。由于有位置传感器存在,电机工作受制于位置传感器,位置传感器安装位置会影响电机运行参数,如电流、速度、输出功率、效率等,同时若安装位置偏差较大,则会导致电机无法启动、高频振动情况,甚至出现损毁电机或控制系统。采用无位置传感器技术则不存在上述问题,同时无位置传感器能简化电机制造、生产制程,并且增大了电机应用范围等。但是单相无刷直流电机的结构,不能像三相直流无刷电机那样有空闲的相线,使得传统反电动势检测转子位置的方法不能适用于单相无刷电机,其不能对单相无刷电机的转子位置进行精确的检测与控制,其极大地限制了单相无刷电机的推广与使用。
技术实现思路
为克服上述缺陷,本技术的目的即在于提供一种单相无传感器无刷直流电机控制系统。本技术的目的是通过以下技术方案来实现的:本技术是一种单相无传感器无刷直流电机控制系统,其与单相无刷电机相连接,包括:分别与所述单相无刷电机的两相线相连接的H桥控制电路,所述H桥控制电路中设有四个MOS管,且四个MOS管分别设置于所述H桥控制电路两侧的输入端与输出端上;所述H桥控制电路两侧的输入端均与电源电压信号相连接,所述H桥控制电路两侧的输出端均与接地信号相连接,且所述H桥控制电路两侧的输出端上还与电流传感器相接;所述电流传感器用于对通过所述单相无刷电机上的电流信号进行采集,并将所采集到的电流信号输送至主控制器中;所述主控制器的信号输出端上分别设有第一驱动电路和第二驱动电路,所述第一驱动电路分别与所述H桥控制电路输入端上的两个MOS管的栅极相连接,用于控制H桥控制电路输入端上的两个MOS管的开合状态;所述第二驱动电路分别与所述H桥控制电路输出端上的两个MOS管的栅极相连接,用于控制H桥控制电路输出端上的两个MOS管的开合状态;所述单相无刷电机的两相线均与反电动势采样电路相连接,所述反电动势采样电路用于对单相无刷电机上的反电动势比较信号进行采集,并将该反电动势比较信号输送至主控制器中;所述主控制器分别与第一驱动电路、第二驱动电路和主控制器相连接,其用于对所述电流传感器所输送的电流信号进行运算处理,并根据运算处理后的结果产生驱动信号,通过该驱动信号对第一驱动电路和第二驱动电路的开合状态进行控制;或对所述反电动势采样电路所输送的反电动势比较信号进行运算处理,并根据运算处理后的结果产生驱动信号,通过该驱动信号对第一驱动电路和第二驱动电路的开合状态进行控制。进一步,所述主控制器包括:电流采样单元、运算单元、数模转换单元、第一比较器、存储器;所述电流采样单元与所述电流传感器相连接,用于接收所述电流传感器所输送的电流信号,并将该电流信号进行模数转换得到电流值,把该电流值传输至运算单元;所述运算单元分别与所述电流采样单元、第一驱动电路和第二驱动电路相连接,用于提取该电流值中的最大电流值,并将该最大电流值发送至数模转换单元;或根据第一比较器所发送的第一比较信号,向所述第一驱动电路和第二驱动电路发送驱动信号;所述数模转换单元分别与所述运算单元和第一比较器连接,用于将接收到的最大电流值进行数模转换,得到最大电流信号,并将该最大电流信号输送至第一比较器中;所述第一比较器分别与所述电流传感器和所述运算单元相连接,用于将从所述电流传感器上获取的电流信号与从所述数模转换单元上获取的最大电流信号进行比较,得到第一比较信号,将该第一比较信号输送至所述运算单元中;所述存储器与所述运算单元相连接,用于对所述运算单元所发送的驱动信号进行存储。进一步,所述反电动势采样电路包括:第一减法器和第二减法器,所述第一、第二减法器均与所述单相无刷电机的两相线相连接,获取单相无刷电机两相线中的第一反电动势信号和第二反电动势信号;所述第一减法器用于将第一反电动势信号与第二反电动势信号相减,得到第一减法信号;所述第二减法器用于将第二反电动势信号与第一反电动势信号相减,得到第二减法信号,所述第一、第二减法信号均输入至选择器中;所述选择器根据外部的控制信号对第一减法信号或第二减法信号进行选择,得到选择输出信号,并将该选择输出信号输出至第二比较器中;所述第二比较器的输入端还与所述主控制器相连接,用于对选择输出信号和主控制器所预设的电压设定值进行比较,得到反电动势比较信号,将该反电动势比较信号输送至所述运算单元中。进一步,所述H桥控制电路两侧的输入端上的MOS管的漏极均与电源电压信号相连接,其源极分别与单相无刷电机的两相线相连接;所述H桥控制电路两侧的输出端上的MOS管的漏极分别与单相无刷电机的两相线相连接,其源极均与接地信号相连接。进一步,所述MOS管的漏极与源极之间均设有续流二极管。进一步,所述主控制器连接于电源电压信号与接地信号之间,且电源电压信号与接地信号之间还设有电容。本技术提供了一种单相无传感器无刷直流电机控制系统,其能很好的适用于单相无刷电机,并能对单相无刷电机的转子位置进行精确的检测与控制,为单相无刷电机的推广与使用建立了一个良好的基础。附图说明为了易于说明,本技术由下述的较佳实施例及附图作详细描述。图1为本技术整体电路结构示意图;图2为本技术中主控制器的电路结构示意图;图3为本技术中反电动势采样电路的结构示意图;图4为本技术中反电动势采样过程的信号波形图;图5为本技术中提起换相励磁过程的信号波形图;图6为本技术中反电动势过零点换相过程的信号波形图;图7为本技术中提前换相励磁换相过程的信号波形图。具体实施方式为了使本技术的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本技术进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本技术,并不用于限定本技术。请参阅图1至图7,本技术是单相无传感器无刷直流电机控制系统,其与单相无刷电机M相连接,包括:分别与所述单相无刷电机M的两相线A、B相连接的H桥控制电路,所述H桥控制电路中设有四个MOS管Q1、Q2、Q3、Q4,且四个MOS管Q1、Q2、Q3、Q4分别设置于所述H桥控制电路两侧的输入端与输出端上;所述H桥控制电路两侧的输入端均与电源电压信号VCC相连接,所述H桥控制电路两侧的输出端均与接地信号GND相连接,且所述H桥控制电路两侧的输出端上还与电流传感器I-S相接;所述电流传感器I-S用于对通过所述单相无刷电机M上的电流信号进行采集,并将所采集到的电流信号输送至主控制器U1中;所述主控制器U1的信号输出端上分别设有第一驱动电路U2-1和第二驱动电路U2-2,所述第一驱动电路U2-1分别与所述H桥控制电路输入端上的两个MOS管Q1、Q3的栅极相连接,用于控制H桥控制电路输入端上的两个MOS管Q1、Q3的开合状态;所述第二驱动电路U2-2分别与所述H桥控制本文档来自技高网...

【技术保护点】
一种单相无传感器无刷直流电机控制系统,其特征在于,其与单相无刷电机相连接,包括:分别与所述单相无刷电机的两相线相连接的H桥控制电路,所述H桥控制电路中设有四个MOS管,且四个MOS管分别设置于所述H桥控制电路两侧的输入端与输出端上;所述H桥控制电路两侧的输入端均与电源电压信号相连接,所述H桥控制电路两侧的输出端均接地,且所述H桥控制电路两侧的输出端上还与电流传感器相接;所述电流传感器用于对通过所述单相无刷电机上的电流信号进行采集,并将所采集到的电流信号输送至主控制器中;所述主控制器的信号输出端上分别设有第一驱动电路和第二驱动电路,所述第一驱动电路分别与所述H桥控制电路输入端上的两个MOS管的栅极相连接,用于控制H桥控制电路输入端上的两个MOS管的开合状态;所述第二驱动电路分别与所述H桥控制电路输出端上的两个MOS管的栅极相连接,用于控制H桥控制电路输出端上的两个MOS管的开合状态;所述单相无刷电机的两相线均与反电动势采样电路相连接,所述反电动势采样电路用于对单相无刷电机上的反电动势比较信号进行采集,并将该反电动势比较信号输送至主控制器中;所述主控制器分别与第一驱动电路、第二驱动电路和主控制器相连接,其用于对所述电流传感器所输送的电流信号进行运算处理,并根据运算处理后的结果产生驱动信号,通过该驱动信号对第一驱动电路和第二驱动电路的开合状态进行控制;或对所述反电动势采样电路所输送的反电动势比较信号进行运算处理,并根据运算处理后的结果产生驱动信号,通过该驱动信号对第一驱动电路和第二驱动电路的开合状态进行控制。...

【技术特征摘要】
1.一种单相无传感器无刷直流电机控制系统,其特征在于,其与单相无刷电机相连接,包括:分别与所述单相无刷电机的两相线相连接的H桥控制电路,所述H桥控制电路中设有四个MOS管,且四个MOS管分别设置于所述H桥控制电路两侧的输入端与输出端上;所述H桥控制电路两侧的输入端均与电源电压信号相连接,所述H桥控制电路两侧的输出端均接地,且所述H桥控制电路两侧的输出端上还与电流传感器相接;所述电流传感器用于对通过所述单相无刷电机上的电流信号进行采集,并将所采集到的电流信号输送至主控制器中;所述主控制器的信号输出端上分别设有第一驱动电路和第二驱动电路,所述第一驱动电路分别与所述H桥控制电路输入端上的两个MOS管的栅极相连接,用于控制H桥控制电路输入端上的两个MOS管的开合状态;所述第二驱动电路分别与所述H桥控制电路输出端上的两个MOS管的栅极相连接,用于控制H桥控制电路输出端上的两个MOS管的开合状态;所述单相无刷电机的两相线均与反电动势采样电路相连接,所述反电动势采样电路用于对单相无刷电机上的反电动势比较信号进行采集,并将该反电动势比较信号输送至主控制器中;所述主控制器分别与第一驱动电路、第二驱动电路和主控制器相连接,其用于对所述电流传感器所输送的电流信号进行运算处理,并根据运算处理后的结果产生驱动信号,通过该驱动信号对第一驱动电路和第二驱动电路的开合状态进行控制;或对所述反电动势采样电路所输送的反电动势比较信号进行运算处理,并根据运算处理后的结果产生驱动信号,通过该驱动信号对第一驱动电路和第二驱动电路的开合状态进行控制。2.根据权利要求1所述的单相无传感器无刷直流电机控制系统,其特征在于,所述主控制器包括:电流采样单元、运算单元、数模转换单元、第一比较器、存储器;所述电流采样单元与所述电流传感器相连接,用于接收所述电流传感器所输送的电流信号,并将该电流信号进行模数转换得到电流值,把该电流值传输至运算单元;所述运算单元分别与所述电流采样单元、第一驱动电路和第二驱动电路相连接,用于提取该电流值中的最大电流值,并将该最大电流值发送至数模转换单元;或根据第一比较...

【专利技术属性】
技术研发人员:吴正华龚宇刘磊章朋
申请(专利权)人:深圳市高科润电子有限公司
类型:新型
国别省市:广东;44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1