便携式电磁超声脉冲激发装置制造方法及图纸

技术编号:14357585 阅读:103 留言:0更新日期:2017-01-09 00:51
本实用新型专利技术涉及便携式电磁超声脉冲激发装置,其特征在于该装置包括直流电源、1#隔离电源、2#隔离电源、升压电路、控制电路、驱动电路、储能电容、功率放大电路、调谐电路和电磁超声换能器,其中,所述直流电源为1#隔离电源和2#隔离电源供电,2#隔离电源与驱动电路的控制侧电源VDDI相连,1#隔离电源与驱动电路的驱动侧的电源VDDB和VDDA相连,1#隔离电源和2#隔离电源同时为所述驱动电路供电,1#隔离电源与升压电路的输入电压Vi相连,为升压电路供电;所述控制电路同时与驱动电路和升压电路连接,升压电路的输出端与储能电容以及功率放大电路的直流母线端连接,驱动电路与功率放大电路的输入端连接,功率放大电路的输出端经调谐电路与电磁超声换能器连接。

【技术实现步骤摘要】

本技术属于工业测量
,具体涉及一种便携式电磁超声脉冲激发装置。该装置检测效率高、体积小、功率大、结构简单。
技术介绍
近年来,无损检测技术对工业设备可靠性和安全性的检测和评估起到越来越重要的作用。电磁超声技术利用电磁耦合的方法激励和接收超声波,与传统的超声检测技术相比,它具有非接触、不需要耦合剂、精度高、适于高温检测以及容易激发各种超声波形等优点。在工业应用中,电磁超声检测技术正越来越受到人们的关注和重视。然而,电磁超声换能器作为电磁超声无损检测技术的核心器件,一方面,其换能效率较低,电磁超声信号微弱,甚至会低至微伏级,限制了该技术的推广应用。另一方面,在普遍采用D类功率放大电路的电磁超声脉冲激发电源中,由于受驱动电路工作频率的限制,导致激发频率不高,也使得其应用场合受限。在便携式检测设备中,脉冲激发装置的输出功率也更是受到限制。在文献《磁致伸缩管道缺陷超声导波检测系统研制》(电测与仪表,2013,50(9):21-25)中,为了提高激励超声导波所需的高电压和大功率,采用两级Boost电路级联的方式将电压从24V升至500V给储能电容充电,由于采用两级Boost升压电路,成本较高、体积较大、效率较低。文献《一种电磁超声检测用脉冲激励电源的研制》(电测与仪表,2012,49(2):76-79)涉及了一种D类功率放大电路的驱动电路,采用集成电路芯片IR2110来驱动MOSFET,虽然结构简单,但最高驱动频率仅有300kHz。文献《电磁超声脉冲激励电路的设计》(理化检验-物理分册,2013,49(3):174-176)也涉及了一种D类功率放大电路的驱动电路,采用4片光耦芯片与4片集成电路芯片来驱动MOSFET,虽驱动频率较高,由于使用器件较多,使得成本高、体积大,不适合用于便携式设备。
技术实现思路
为了克服上述现有技术的不足,本技术的目的是提供一种小体积、低功耗、低成本、驱动频率高,且在野外工作条件下能够提供大功率、激发出较强的电磁超声信号的便携式电磁超声脉冲激发装置。本技术解决所述技术问题所采用的技术方案是,提供一种便携式电磁超声脉冲激发装置,其特征在于该装置包括直流电源、1#隔离电源、2#隔离电源、升压电路、控制电路、驱动电路、储能电容、功率放大电路、调谐电路和电磁超声换能器,其中,所述直流电源为1#隔离电源和2#隔离电源供电,2#隔离电源与驱动电路的控制侧电源VDDI相连,1#隔离电源与驱动电路的驱动侧的电源VDDB和VDDA相连,1#隔离电源和2#隔离电源同时为所述驱动电路供电,1#隔离电源与升压电路的输入电压Vi相连,为升压电路供电;所述控制电路同时与驱动电路和升压电路连接,升压电路的输出端与储能电容以及功率放大电路的直流母线端连接,驱动电路与功率放大电路的输入端连接,功率放大电路的输出端经调谐电路与电磁超声换能器连接;所述控制电路向所述升压电路输出TTL控制信号,控制升压电路开启升压,对储能电容进行充电;储能电容充满电之后,控制电路向驱动电路同时输出使能信号和脉冲方波信号;驱动电路驱动功率放大电路将储能电容中的高压直流电逆变为交流电,然后,交流电经过调谐电路之后传送给电磁超声换能器。与现有技术相比,本技术的有益效果是:本技术采用基于耦合电感的DC-DC升压变换器作为升压电路,为一种全新的升压电路结构,一方面,此升压电路的开关损耗较低,对储能电容的充电速度较快,即在较短的时间内可将储能电容充电至高压,可以提高整个装置的工作重复频率;另一方面,此升压电路对MOSFET的电压应力要求低,可以使用低导通电阻的MOSFET,进一步降低损耗,同时降低成本,与传统的反激升压和级联Boost电路相比具有升压(电容充电)速度快、体积小、效率高、成本低的特点。采用硅隔离驱动芯片作为驱动电路,可以实现更高的驱动频率,而且省去了现有技术中的光耦隔离,使得电路结构变得简单,缩小了体积,降低了成本。整个装置体积较小,携带更加方便,在野外工作条件下也能够提供较大的能量,激发出较强的电磁超声信号。附图说明为了更清楚地说明本技术实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。图1为本技术便携式电磁超声脉冲激发装置一种实施例的整体结构框图;图2为本技术便携式电磁超声脉冲激发装置一种实施例的门控使能信号及脉冲方波信号示意图;图3为本技术便携式电磁超声脉冲激发装置一种实施例的升压电路4的电路图;图4为本技术便携式电磁超声脉冲激发装置一种实施例的驱动电路5的电路图;其中图4-1是功率放大电路8的左半桥驱动电路;图4-2是功率放大电路8的右半桥驱动电路;图5为本技术便携式电磁超声脉冲激发装置一种实施例的功率放大电路8的电路图;图6为应用本技术便携式电磁超声脉冲激发装置进行测试的测试系统结构示意图。图7为应用本技术便携式电磁超声脉冲激发装置进行测试得到的检测波形图。图中,1.直流电源,2.1#隔离电源,3.2#隔离电源,4.升压电路,5.控制电路,6.驱动电路,7.储能电容,8.功率放大电路,9.调谐电路,10.电磁超声换能器。具体实施方式为了引用和清楚起见,下文中使用的技术名词、简写或缩写总结如下:EMAT:ElectromagneticAcousticTransducer,电磁超声换能器;MOSFET:MetalOxideSemiconductorFET,金属氧化物半导体场效应晶体管(以下简称场效应管);下面结合实施例及附图,对本技术实施例中的技术方案进行清楚、完善地描述,显然,所描述的实施例仅仅是本技术一部分实施例,而不是全部实施例。基于本技术中的实施例,本领域普通技术人员在没有做出创造性劳动前提下获得的其它实施例,都属于本申请权利要求的保护范围。本技术便携式电磁超声脉冲激发装置(简称装置,参见图1-5)包括:直流电源1、1#隔离电源2、2#隔离电源3、升压电路4、控制电路5、驱动电路6、储能电容7、功率放大电路8、调谐电路9和电磁超声换能器10,其中,所述直流电源1为1#隔离电源2和2#隔离电源3供电,2#隔离电源3与驱动电路的控制侧电源VDDI相连,1#隔离电源2与驱动电路的驱动侧的电源VDDB和VDDA相连,1#隔离电源2和2#隔离电源3同时为所述驱动电路6供电,1#隔离电源2与升压电路的输入电压Vi相连,为升压电路4供电;所述控制电路5同时与驱动电路6和升压电路4连接,升压电路4的输出端与储能电容7以及功率放大电路8的直流母线端连接,驱动电路6与功率放大电路8的输入端连接,功率放大电路8的输出端经调谐电路9与电磁超声换能器10连接。所述控制电路5向所述升压电路4输出TTL控制信号,控制升压电路4开启升压,对储能电容7进行充电;储能电容7充满电之后,控制电路5向驱动电路6同时输出使能信号和脉冲方波信号;驱动电路6驱动功率放大电路8将储能电容7中的高压直流电逆变为交流电,然后,交流电经过调谐电路9之后传送给电磁超声换能器。具体地,控制电路5向升压电路4输出一充电使能信号charge,通过该使能信号控制升压电路4的开启,在升压电路4开启的时间t2内,1#隔离电源3为升压电路4提供直流偏置电压,升压电路4对储能电本文档来自技高网
...
便携式电磁超声脉冲激发装置

【技术保护点】
一种便携式电磁超声脉冲激发装置,其特征在于该装置包括直流电源、1#隔离电源、2#隔离电源、升压电路、控制电路、驱动电路、储能电容、功率放大电路、调谐电路和电磁超声换能器,其中,所述直流电源为1#隔离电源和2#隔离电源供电,2#隔离电源与驱动电路的控制侧电源VDDI相连,1#隔离电源与驱动电路的驱动侧的电源VDDB和VDDA相连,1#隔离电源和2#隔离电源同时为所述驱动电路供电,1#隔离电源与升压电路的输入电压Vi相连,为升压电路供电;所述控制电路同时与驱动电路和升压电路连接,升压电路的输出端与储能电容以及功率放大电路的直流母线端连接,驱动电路与功率放大电路的输入端连接,功率放大电路的输出端经调谐电路与电磁超声换能器连接。

【技术特征摘要】
1.一种便携式电磁超声脉冲激发装置,其特征在于该装置包括直流电源、1#隔离电源、2#隔离电源、升压电路、控制电路、驱动电路、储能电容、功率放大电路、调谐电路和电磁超声换能器,其中,所述直流电源为1#隔离电源和2#隔离电源供电,2#隔离电源与驱动电路的控制侧电源VDDI相连,1#隔离电源与驱动电路的驱动侧的电源VDDB和VDDA相连,1#隔离电源和2#隔离电源同时为所述驱动电路供电,1#隔离电源与升压电路的输入电压Vi相连,为升压电路供电;所述控制电路同时与驱动电路和升压电路连接,升压电路的输出端与储能电容以及功率放大电路的直流母线端连接,驱动电路与功率放大电路的输入端连接,功率放大电路的输出端经调谐电路与电磁超声换能器连接。2.根据权利要求1所述的便携式电磁超声脉冲激发装置,其特征在于所述升压电路包括输入电解电容Ci、输出电容Co、耦合电感的初级电感LP、耦合电感的次级电感LS、电容Cb1、电容Cb2、电容Cc、电阻Rg、电阻RG、电阻Rs、电阻RFB1、滑动变阻器RFB2、场效应管S、NPN型双极性三极管Qs、NPN型双极性三极管QT、NPN型双极性三极管Qu、PNP型双极性三极管Qd、电阻Rb0、电阻RE、电阻RF、电阻Rb、电阻RT、电容CT、电容CF、电容Cp1、电容Cp2和集成芯片UC3843,具体电路组成是输入电解电容Ci的负端接地,正端同时与耦合电感的初级电感LP的第1端和输入电压Vi的正极相连,输入电压Vi的负极接地;所述耦合电感的初级电感LP的第2端同时连接电容Cb1的一端、场效应管S的漏极、二极管DC的阳极;二极管DC的阴极同时与二极管Db1的阳极、电容Cc的一端连接;场效应管S的栅极与电阻Rg的一端、电阻RG的一端连接;场效应管S的源极同时与电阻RG的另一端、电阻Rs的一端、电容Cc的另一端、电阻RE的一端、RF的一端连接;电阻Rs的另一端接地;电容Cb1的另一端同时连接耦合电感的次级电感LS的第1端、二极管Db2的阳极;耦合电感的次级电感LS的第2端同时连接二极管Db1的阴极、电容Cb2的一端;电容Cb2的另一端同时连接二极管Db2的阴极、二极管Do的阳极;二极管Do的阴极同时连接输出电容Co的一端和电阻RFB1的一端,且输出高压HV,高压HV为储能电容充电;所述输出电容Co的另一端接地;电阻RFB1的另一端与滑动变阻器RFB2的一端连接,滑动变阻器RFB2的另一端接地,滑动变阻器RFB2的滑动端与集成芯片UC3843的VFB脚连接;所述电阻Rb0的一端接控制电路的TTL控制信号charge,另一端接所述NPN型双极性三极管Qs的基极;所述NPN型双极性三极管Qs的集电极接集成芯片UC3843的COMP脚,发射极接地;所述集成芯片UC3843的VREF脚同时连接电容Cp1的一端、电阻RT的一端、NPN型双极性三极管QT的集电极;所述电容Cp1的另一端接地;电阻RT的另一端同时连接NPN型双极性三极管QT的基极、集成芯片UC3843的RT/CT脚、电容CT的一端;电容CT的另一端接地;电阻RE的另一端与NPN型...

【专利技术属性】
技术研发人员:刘素贞李丽滨张闯金亮杨庆新
申请(专利权)人:河北工业大学
类型:新型
国别省市:天津;12

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1