一种在钛基底上制备锐钛矿型二氧化钛微纳米结构的方法技术

技术编号:12800884 阅读:144 留言:0更新日期:2016-01-30 21:50
本发明专利技术公开了一种在钛基底上制备锐钛矿型二氧化钛微纳米结构的方法。其特征是:首先采用超快激光对纯钛片进行刻蚀,在纯钛片表面制备出微米结构;然后将刻蚀后的钛片放入H2O2中,对超快激光刻蚀后的微米结构进行氧化获得二氧化钛,同时在微米结构表面制备出纳米结构;最后通过退火将二氧化钛转变为锐钛矿型二氧化钛。该方法在纯钛片表面制备出的锐钛矿型二氧化钛微纳米结构在200nm-1000nm波长范围具有高吸收率且与基底结合牢固,可直接用于光催化、染料敏化太阳能电池、气体传感器、锂离子电池等领域。

【技术实现步骤摘要】

本专利技术涉及表面微纳米功能结构的制备,具体为一种在钛基底表面制备低反射率锐钛矿型二氧化钛微纳米结构的方法。
技术介绍
:锐钛矿型二氧化钛以其安全无毒、光电转换效率高、稳定性好的优点,被广泛运用于光催化、染料敏化太阳能电池、气体传感器、锂离子电池等领域。作为光电转换材料,二氧化钛的光吸收性能对于其光电转换效率与催化性能有直接影响。此外,作为染料敏化太阳能电池的光阳极材料,二氧化钛需要通过吸附染料敏化剂进行工作;参与光催化反应时,二氧化钛需要通过吸附降解物进行降解。以上需求均对二氧化钛提出高比表面积的要求。微纳米结构由于高比表面积、界面效应、量子效应在物质吸附与光学性能上表现优越,在光催化与染料敏化太阳能电池领域得到广泛应用。研究表明,通过制备二氧化钛微纳米结构可以增加光利用效率与比表面积,成为当前的研究热点。在金属钛表面制备不同形貌的锐钛矿型二氧化钛微纳米结构具有多方面优势:1)钛作为基底时面电阻小,并且直接在钛表面制备的二氧化钛与基底接触电阻与电荷传输阻抗小,可以实现光生电子的快速转移,减少光生电子与空穴对的复合从而促进光电转换效率的提升;同时具有灵活性高、耐高温与低成本的优势;2)钛作为基底时,在其表面直接生成的二氧化钛微纳米结构与基底结合牢固,可以更加高效的实现二氧化钛的重复利用;3)钛表面二氧化钛钝化膜的形成能够抵抗电解液的腐蚀作用。因此,在钛基底上直接制备锐钛矿型二氧化钛微纳米结构,通过对二氧化钛微纳米结构的调控实现光学性能与比表面积的最优化,对二氧化钛的性能提升及实际应用具有重要意义。目前,多采用化学或机械抛光后的光滑钛表面制备二氧化钛微纳米结构,对于在非光滑钛表面制备二氧化钛微纳米结构的研究较少。有研究表明,通过砂纸打磨可以在钛表面制备微结构,降低钛表面的光滑程度,经氧化后形成的二氧化钛薄膜与抛光后制备的薄膜相比,由于表面微结构的产生,可以吸附更多的物质,在光催化运用时性能得到大幅提升。这种通过砂纸打磨改变薄膜形貌从而提升其性能的方法简单可行。但砂纸打磨的前期微结构形貌有限,因此通过其他方法制备形貌更加丰富的微结构,从而得到更大吸附能力、更强光吸收的薄膜结构具有重要意义。超快激光作为一种精密加工工具,具有超精细、“冷加工”的独特优势,可以制备高吸收率与宽光谱吸收、超疏水或亲水、自清洁等多种表面微纳米结构。其中,超快激光刻蚀后产生的周期性条纹结构、微米锥形与纳米波纹复合结构、多孔珊瑚与纳米复合结构等多种结构在光吸收性能方面表现优越。同时,超快激光“冷加工”的特点使加工表面成分不发生实质性改变,有利于后续化学氧化的实施。本专利技术将超快激光刻蚀、H202化学氧化和退火相结合,先采用超快激光在钛基底表面制备低反射率微米结构,通过h202化学氧化法对微米结构进行氧化获得二氧化钛,并在氧化的同时实现表面纳米结构的制备,最后通过退火将二氧化钛转变为锐钛矿型二氧化钛,获得低反射率锐钛矿型二氧化钛微纳米结构。
技术实现思路
本专利技术通过超快激光刻蚀、化学氧化和退火结合提供了一种大面积、高效、可控制备低反射率锐钛矿型二氧化钛薄膜的新方法。,其特征是:首先采用超快激光对纯钛片进行刻蚀,在钛片表面制备出微米结构;然后将刻蚀后的钛片放入h202中,对超快激光刻蚀后的微米结构进行氧化获得二氧化钛,同时在微米结构表面制备出纳米结构;最后通过退火将二氧化钛转变为锐钛矿型二氧化钛,获得锐钛矿型二氧化钛微纳米结构。进一步,钛片的纯度在99wt.%以上。进一步,超快激光的脉宽小于10皮秒。进一步,超快激光刻蚀能量密度多0.3J/cm2,制备的微米结构包括周期性条纹结构、凸起椎形阵列或孔洞结构。进一步,氧化所用的比02浓度为15wt.% -30wt.%,温度为80°C _95°C,氧化时间l-3ho进一步,化学氧化后在钛表面微米结构上形成的纳米结构,包括纳米多孔结构、纳米线或两者复合结构。进一步,退火在空气或氧气氛围中进行,退火温度为300°C -550°C,退火时间l-3ho本专利技术的优点是:1)利用不同的超快激光刻蚀参数和化学氧化参数可以对微米结构和纳米结构分别进行调控,实现所制备的二氧化钛微纳米结构性能的最优化;2)制备的锐钛矿型二氧化钛微纳米结构形貌丰富,反射率低;3)可以实现大面积锐钛矿型二氧化钛微纳米结构的快速制备;4)氧化过程要求低、设备简单、时间短。【附图说明】:图1为实施例1超快激光刻蚀后的孔洞结构(A、B)和孔洞结构氧化后(C、D)表面形貌;图2为实施例2超快激光刻蚀后的圆柱凸起结构(A、B)和圆柱凸起结构氧化后(C、D)表面形貌;图3为超快激光刻蚀后㈧、氧化后⑶、氧化退火后(C)的XRD测试结果。图4为实施例1、2刻蚀与2000目砂纸打磨后(A)、氧化后(B)、氧化退火后(C)的反射率测试结果对比。【具体实施方式】:以下结合实施例进一步阐述本专利技术用超快激光、化学氧化法和退火结合制备锐钛矿型二氧化钛微纳米结构的方法,但本专利技术并不仅仅局限于下述实施例。实施例11)用2000目的砂纸对纯钛片(99.9wt.10mm* 10mm* 1mm)打磨后,超声清洗10分钟并干燥;2)用超快激光对步骤1)得到的钛片表面进行刻蚀。加工参数为平均功率20W、单脉冲能量200 μ J、重复频率200ΚΗζ、聚焦光斑160 μπκ扫描间距50 μπκ扫描速度500mm/s、刻蚀次数为25次;3)将步骤2)刻蚀后得到的钛片用H202(10ml,30wt.% )在80°C下氧化lh ;4)将步骤3)氧化得到的钛片在空气中450°C退火lh。实施例21)用2000目的砂纸对纯钛片(99.9wt.%, 10mm* 10mm* 1mm)打磨后,超声清洗10分钟并干燥;2)用超快激光对步骤1)得到的钛片表面进行刻蚀。加工参数为平均功率20W、单脉冲能量200 μ J、重复频率200KHz、聚焦光斑160 μπκ扫描间距50 μπκ扫描速度1000mm/s、刻蚀次数为10次;3)将步骤2)刻蚀后得到的钛片用H202(10ml,30wt.% )在80°C下氧化lh ;4)将步骤3)氧化得到的钛片在空气中450°C退火lh。实施例1中超快激光刻蚀后在表面形成10-20 μ m的孔洞结构(图1A、1B)。实施例2中超快激光刻蚀后在表面形成5 μπι左右的凸起锥形阵列结构与条纹的复合结构(图2Α、2Β)。以上两种结构经Η202化学氧化后,微米结构的特征未被破坏(图1C、2C),并在微结构上形成纳米线结构(图1D)和纳米孔结构(图2D)。实施例1、2中,超快激光刻蚀后的微结构成分均主要为钛(图3A),氧化后的微纳米结构成分为钛和锐钛矿型二氧化钛(图3B),退火后的微纳米结构成分为钛和锐钛矿型二氧化钛(图3C)。退火处理生成了结晶性更好的锐钛矿型二氧化钛。采用2000目砂纸打磨的方法降低钛表面的光滑程度,经氧化、退火制备二氧化钛,并与实施例1、2进行对比。同砂纸打磨样品相比,实施例1、2中超快激光刻蚀后的微结构反射率(图4A)、氧化后的微纳米结构反射率(图4B)和退火后的微纳米结构反射率(图4C)均显著下降。其中,实施例1制备的孔洞结构退火后在200nm-1000nm波长内反射率小于8% ο【主权项】1.,其特征是:首先采用超快激光对纯钛片进本文档来自技高网
...

【技术保护点】
一种在钛基底上制备锐钛矿型二氧化钛微纳米结构的方法,其特征是:首先采用超快激光对纯钛片进行刻蚀,在钛片表面制备出微米结构;然后将刻蚀后的钛片放入H2O2中,对超快激光刻蚀后的微米结构进行氧化获得二氧化钛,同时在微米结构表面制备出纳米结构;最后通过退火将二氧化钛转变为锐钛矿型二氧化钛,获得锐钛矿型二氧化钛微纳米结构。

【技术特征摘要】

【专利技术属性】
技术研发人员:黄婷卢金龙张欣肖荣诗
申请(专利权)人:北京工业大学
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1