一种自动化玻璃钢化装置制造方法及图纸

技术编号:12264645 阅读:50 留言:0更新日期:2015-10-29 20:51
本实用新型专利技术公开了一种自动化玻璃钢化装置,包括上片台、加热室、风栅冷却室和下片台,所述上片台、加热室、风栅冷却室和下片台分别设置有依次对接的辊道,所述辊道的上表面处于同一水平面,所述加热室内设置有给玻璃加热的热风装置,所述风栅冷却室与外置的风机连接;该玻璃钢化装置还包括制冷装置,所述制冷装置包括压缩机、蒸发器和冷凝器,所述冷凝器的出风口通过管道连接于热风装置的进风口,所述蒸发器的出风口通过管道连接于风机的进风口。本实用新型专利技术自动化玻璃钢化装置的电能使用效率高,能耗低。

【技术实现步骤摘要】

本技术涉及玻璃钢化领域,特别是涉及一种自动化玻璃钢化装置
技术介绍
钢化玻璃是平板玻璃的二次加工产品,钢化玻璃的加工可分为物理钢化法和化学钢化法。物理钢化玻璃又称为淬火钢化玻璃。它是将普通平板玻璃在加热到接近玻璃的软化温度(640°C左右)时,通过自身的形变消除内部应力,然后将玻璃移出加热炉,再用多头喷嘴将高压冷空气吹向玻璃的两面,使其迅速且均匀地冷却至室温,即可制得钢化玻璃。这种玻璃处于内部受拉而外部受压的应力状态,一旦局部发生破损,便会发生应力释放,玻璃被破碎成无数小块,这些小的碎片没有尖锐棱角,不易伤人。在钢化玻璃的生产过程中,对产品质量影响最大的当是如何使玻璃形成较大而均匀的内应力。而对产量影响最大的则是如何防止炸裂和变形。现有技术的玻璃钢化炉大都采用电加热式玻璃钢化炉,其炉体长度为24米,通过辊道进行玻璃的传输,其先后经过加热系统将玻璃温度加热到630-640度左右,在由辊道输送至冷却系统,在冷却系统中急速冷却至60-70度。现有的加热系统采用直径为4毫米的钢化电炉丝作为引线进行加热,其加热的温度虽达到要求,但使用寿命较短,导致加热效果不佳,需要降低陶瓷辊道的速度,延长玻璃在保温系统中停留的时间来完成玻璃的加热处理。同时,电炉丝的能耗极高,因此在钢化过程中要消耗大量的电能。
技术实现思路
本技术要解决的技术问题,提供一种生产效率高、能耗低的自动化玻璃钢化 目.ο本技术是这样实现的:一种自动化玻璃钢化装置,包括上片台、加热室、风栅冷却室和下片台,所述上片台、加热室、风栅冷却室和下片台分别设置有依次对接的辊道,所述辊道的上表面处于同一水平面,所述加热室内设置有给玻璃加热的热风装置,所述风栅冷却室与外置的风机连接;该自动化玻璃钢化装置还包括制冷装置,所述制冷装置包括压缩机、蒸发器和冷凝器,所述冷凝器的出风口通过管道连接于热风装置的进风口,所述蒸发器的出风口通过管道连接于风机的进风口。进一步的,为提高辊道的耐高温性能,在一可能的实施方式中,所述加热室与风栅冷却室的辊道为陶瓷辊道。进一步的,为使玻璃钢化与冷却的时间可控,提高钢化装置的控制灵活性,所述上片台、加热室、风栅冷却室和下片台的辊道分别由独立的驱动电机驱动运行。进一步的,为提高玻璃钢化装置的能量使用效率,减少加热室内的热量向外扩散,所述加热室的侧壁与顶壁上分别设置有隔热棉。进一步的,为提高加热室的电能转换效率,降低玻璃钢化装置的整体能耗,所述热风装置包括管形加热室、送气风扇和电发热管,所述电发热管设置于所述管形加热室内,送气风扇设置于管形加热室的进气端内,管形加热室的进气端通过管道连接于所述冷凝器的出风口。进一步的,为降低压缩机的能耗和噪音,所述压缩机为变频压缩机。本技术具有如下优点:区别于现有的玻璃钢化装置单纯采用电炉丝发热,本技术新增加了制冷装置,制冷装置的冷凝器的出风口通过管道连接于热风装置的进风口,制冷装置的蒸发器的出风口通过管道连接于风机的进风口,制冷装置的热风和冷风都被合理的被用于加热玻璃和冷却玻璃,大大降低了本玻璃钢化装置的能耗,同时也提高了生产效率。【附图说明】图1为本技术实施方式自动化玻璃钢化装置的结构示意图;图2为图1中热风装置的结构示意图。标号说明:1、上片台;2、加热室;3、风栅冷却室;4、下片台;5、制冷装置;21、热风装置;22、31、隔热棉;51、压缩机;52、蒸发器;53、冷凝器;54、膨胀阀;33、风机;11、23、32、41、辊轴;211、送气风扇;212、电发热管;231、管形加热室。【具体实施方式】为详细说明本技术的
技术实现思路
、构造特征、所实现目的及效果,以下结合实施方式并配合附图详予说明。请参阅图1,一种自动化玻璃钢化装置,包括上片台1、加热室2、风栅冷却室3和下片台4,所述上片台I和下片台4分别用于玻璃上片和玻璃钢化后下架,所述加热室3则是用于对玻璃进行加热,使其温度迅速升高,所述风栅冷却室4则是用于对加热后的玻璃进行风冷,从而实现钢化过程。其中,在所述上片台1、加热室2、风栅冷却室3和下片台4上分别设置辊道,辊道上设置有辊轴11、23、32、41,所述辊道依次对接,辊道的上表面处于同一水平面,所述辊道是用于传送玻璃,使其从上片台1、加热室2、风栅冷却室3和下片台4依次经过,从而实现钢化的整个过程。在所述加热室2内设置有给玻璃加热的热风装置21,所述热风装置21产生大量的热量,并作用于玻璃表面,使玻璃的温度迅速升高;所述风栅冷却室3与外置的风机33连接,通过风机33产生的大量的风量带走玻璃的温度,从而迅速降低玻璃的温度,为减少加热室的能量外散,所述加热室的侧壁与顶壁上分别设置有隔热棉22,所述风栅冷却室的侧壁与顶壁也设置有隔热棉31。所述上片台1、加热室2、风栅冷却室3和下片台4的辊道分别由独立的驱动电机驱动运行,因此,只需将玻璃放置于上片台上,玻璃即可被依次传送至加热室、风栅冷却室和下片台,整个钢化过程无需人工操作(人工只负责玻璃上架与下架),自动化程度高。在本实施方式中,所述自动化玻璃钢化装置还包括制冷装置5,所述制冷装置5与传统的压缩制冷装置的结构和原理都相同,包括压缩机51、蒸发器52、膨胀阀54和冷凝器53,所述压缩机51、冷凝器53、膨胀阀54、蒸发器52依次通过铜管串联,形成密封循环管道,循环管道内循环有制冷制。优选的,所述压缩机51为变频压缩机。所述冷凝器53的出风口通过管道连接于热风装置21的进风口,所述蒸发器52的出风口通过管道连接于风机33的进风口。因此,所述冷凝器53所释放出来的热量被输送至热风装置21内,对热风装置21内的空气进行预热,预热后的空气经再加热后被用于加热玻璃;所述蒸发器52所吹出的冷风则被风机33吹送到风栅冷却室3内用于玻璃降低。可见制冷装置5所释放出来的能量(包括热风和冷风)被合理的用于玻璃加热和玻璃降温,同时,相对于传统的电发热装置,压缩式制冷装置5的能量转换率最高,是传统发热装置的5?6倍(理论上可达到8倍),因此,大大提高了电能的使用效率,降低了装置的整体能耗。在一实施方式中,为提高辊道的耐高温性能,所述加热室2与风栅冷却室3的辊道为陶瓷辊道,陶瓷辊道上的每一辊轴23和32的表面都是由陶瓷制成的,具有良好的耐高温性能。进一步的,为提高加热室的电能转换效率,降低玻璃钢化装置的整体能耗,请参阅图2,在一实施方式中,所述热风装置包括管形加热室213、送气风扇211和电发热管212,所述电发热管212设置于所述管形加热室213内,送气风扇211设置于管形加热室213的进气端内,管形加热室的进气端通过管道连接于所述冷凝器53的出风口。以上所述仅为本技术的实施例,并非因此限制本技术的专利范围,凡是利用本技术说明书及附图内容所作的等效形状或结构变换,或直接或间接运用在其他相关的
,均同理包括在本技术的专利保护范围内。【主权项】1.一种自动化玻璃钢化装置,包括上片台、加热室、风栅冷却室和下片台,所述上片台、加热室、风栅冷却室和下片台分别设置有依次对接的辊道,所述辊道的上表面处于同一水平面,所述加热室内设置有给玻璃加热的热风装置,所述风栅冷却室与外置的风机连接,其特征在于,还包括制冷装置,本文档来自技高网
...

【技术保护点】
一种自动化玻璃钢化装置,包括上片台、加热室、风栅冷却室和下片台,所述上片台、加热室、风栅冷却室和下片台分别设置有依次对接的辊道,所述辊道的上表面处于同一水平面,所述加热室内设置有给玻璃加热的热风装置,所述风栅冷却室与外置的风机连接,其特征在于,还包括制冷装置,所述制冷装置包括压缩机、蒸发器和冷凝器,所述冷凝器的出风口通过管道连接于热风装置的进风口,所述蒸发器的出风口通过管道连接于风机的进风口。

【技术特征摘要】

【专利技术属性】
技术研发人员:郭文忠
申请(专利权)人:福建省港达玻璃制品有限公司
类型:新型
国别省市:福建;35

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1