当前位置: 首页 > 专利查询>浙江大学专利>正文

一种间接测量线性压缩机弹簧刚度和动子质量的方法技术

技术编号:12031098 阅读:108 留言:0更新日期:2015-09-10 17:58
本发明专利技术公开了一种间接测量线性压缩机弹簧刚度和动子质量的方法,包括:在压缩机出口连接声学负载,对整个系统充压,在保证声学负载的声阻抗实部不变的条件下,检测至少两组不完全相同的声阻抗虚部和角频率数据,结合压缩机谐振条件,计算得到弹簧刚度及动子质量;所述角频率数据为压缩机的电声转换效率最高时对应的角频率。与现有技术相比,本发明专利技术的有益效果体现在:可在无需拆解线性压缩机的前提下,对压缩机进行间接测试,测试方法简单易于操作,且避免了由于拆解压缩机带来对其内部结构部件的损坏。

【技术实现步骤摘要】
一种间接测量线性压缩机弹簧刚度和动子质量的方法
本专利技术属于线性压缩机领域,具体涉及一种线性压缩机弹簧刚度和动子质量的间接测量方法。
技术介绍
线性压缩机由于结合了直线电机、柔性板弹簧以及间隙密封等关键技术,具有寿命长、无摩擦、振动低、噪声小以及可靠性高等一系列优势,已广泛应用于低温制冷机和冰箱等领域。线性压缩机可以理解为由三大部分组成:电路部分、机械部分以及声负载部分。其中机械部分连接电路与声负载,发挥着将电功有效转换为声功的作用。机械部分中的动子质量和弹簧刚度两个关键参数直接影响着压缩机针对特定负载的声功输出特性,因此对于线性压缩机而言至关重要。图1所示为线性压缩机结构示意图,图2所示为其等效物理模型,其可看做由三部分组成,从左至右分别为:电路部分,机械部分,声学部分。其中U为输入电压,I为输入电流,Re代表电阻,Xe代表电抗,α为电机比推力,Rm为线性压缩机的机械阻尼系数,M为动子质量,ks为线性压缩机的板弹簧刚度,pc代表压缩机出口压力波动,Vc代表线性压缩机出口气体体积流率,Ra为声阻抗实部,Xa为声阻抗虚部。目前弹簧刚度ks的测量方法为:在压缩机装配之前,通过特殊测量装置(如万能材料试验机)测量其在不同位移下的弹性力,从而通过胡克定律得到弹簧刚度ks;动子质量M的测量方法为:在压缩机装配之前,直接测量活塞头、活塞杆等运动部件的质量,再加上弹簧部件质量的1/3,即为总的动子质量M。上述测量过程均发生在压缩机装配之前,需要对参数进行逐一单独测量。线性压缩机在长时间运行过后,由于一些原因,如板弹簧材料性质的改变,动圈绕组绝缘层的放气等,导致弹簧刚度和动子质量发生变化,影响压缩机输出特性。此时如需测量这两个参数,需拆开压缩机,较为不便。此外,由于线性压缩机的密封依靠的是活塞与气缸之间微米级的间隙,这也使得其装配极其困难。且在一些场合,缺少上述测量装置,使得参数难以获得。
技术实现思路
本专利技术提供了一种间接测量线性压缩机弹簧刚度和动子质量的方法,该方法在无需拆解压缩机的情况下可实现对压缩机参数的间接无损测量,操作简单,避免了现有技术的复杂检测过程,检测效率高,实施方便。本专利技术根据线性压缩机谐振工况下电声转化效率最高的原理,通过合理的测量流程,由所测得负载声阻抗以及压缩机效率来反推弹簧刚度和动子质量。本专利技术在待测压缩机出口连接间接测量装置,通过合理设计的测量流程,计算反推得到弹簧刚度及动子质量。一种间接测量线性压缩机弹簧刚度和动子质量的方法,包括:在压缩机出口连接声学负载,对整个系统充压,在保证声学负载的声阻抗实部不变的条件下,检测至少两组不完全相同的声阻抗虚部和角频率数据,结合压缩机谐振条件,计算得到弹簧刚度及动子质量;所述角频率数据为压缩机的电声转换效率最高时对应的角频率。作为优选,所述两组不完全相同的声阻抗虚部和角频率数据分别为第一个声阻抗虚部Xa1、第一个角频率ω1以及第二个声阻抗虚部Xa2、第二个角频率ω2;将两组数据分别带入如下两个计算式,得到所述的弹簧刚度及动子质量:式(1)和式(2)中,A为活塞面积,||表示绝对值;ks为线性压缩机的板弹簧刚度,M为线性压缩机的动子质量;压缩机最高电声转换效率时,压缩机达到谐振,得到下式(3)和式(4):ω1M-ks/ω1=A2|Xa1|(3)ω2M-ks/ω2=A2|Xa2|(4);由式(3)和式(4)得到所述式(1)和式(2)。作为优选,所述声学负载包括通过管路与所述压缩机出口连通的气库,以及设置在所述管路上的阀门;通过固定阀门的开度,实现声学负载的声阻抗实部不变;通过改变充气压力或气库体积改变得到两组声阻抗虚部和角频率数据。其中声阻抗虚部由下式计算得到:式(5)中,γ为工质气体绝热指数;PM为系统充气压力;f为线性压缩机的运行频率;V为气库体积;从上式(5)可知,通过调整系统充气压力或者气库体积即可实现对声阻抗虚部的调整;所述压缩机的电声转换效率由下式计算得到:式(6)中,||表示交变量幅值,We是线性压缩机的输入电功;pc代表压缩机出口压力波动;pr代表阀门和气库之间管路的压力波动;为pc和pr之间的相位差。本专利技术中,A、γ、PM、V、f均可采用现有方法检测得到、计算得到或者现有资料中查到;本专利技术的阀门与线性压缩机之间的管路上设有用于检测压缩机出口压力波动pc的检测点,所述阀门与气库之间的管路上设有用于检测阀门和气库之间管路的压力波动pr的检测点。本专利技术的具体检测步骤包括:(1)固定阀门开度,对系统充压,即固定声阻抗实部Ra,根据系统充气压力和气库体积得到声阻抗虚部Xa1;调节线性压缩机的运行频率,同时根据检测的压力波动pc和pr,利用式(6)得到该工况下,最高电声转换效率时对应的角频率ω1,此时压缩机达到谐振,得到式(3)。(2)改变气库体积或改变充气压力得到第二个声阻抗虚部Xa2,再次调节线性压缩机的运行频率,同时根据检测的压力波动pc和pr,利用式(6)得到该工况下,最高电声转换效率时对应的角频率ω2,此时压缩机达到谐振,得到式(4),联立式(3)和式(4)得到ks与M表达式,如式(1)和式(2)。在两次分别获取Xa1和Xa2时,需要两组充气压力和气库体积的组合,为提高测量精度,从表达式(1)和式(2)中看出,需尽可能大得区别Xa1和Xa2。根据公式(5),此时存在充气压力与气库体积组合的优选,即较高的充气压力对应较小的气库体积,较低的充气压力对应较大的气库体积。即在选择充气压力和气库体积数据组时,作为优选,所述充气压力和气库体积具有相反的选择趋势。采用上述方法,可以简单的检测出线性压缩机的ks与M。与现有测试方法相比,本专利技术的有益效果体现在:可在无需拆解线性压缩机的前提下,对压缩机进行间接测试,测试方法简单易于操作,且避免了由于拆解压缩机带来对其内部结构部件的损坏。附图说明图1为线性压缩机结构示意图;图2为线性压缩的等效物理模型图;图3为线性压缩机驱动RC声学负载结构示意图。具体实施方式图3所示为实现本专利技术间接测量线性压缩机弹簧刚度和动子质量的方法的装置结构示意图。即在压缩机出口连接管路,在该管路上设置一组阀门R和气库C,其中阀门靠近压缩机出口设置。其中阀门的作用在于提供等效阻抗实部,而气库的作用在于提供等效阻抗虚部。通过一些合理的实验测量,可以反推得到压缩机的弹簧刚度ks、动子质量M这两个重要且不易实际测量的参数。实验中需要在阀门前后各安装一个压力传感器,用于测量该处的压力波动pc和pr,pc代表压缩机出口的压力波动,pr代表阀门和气库之间管路的压力波动,从而计算阀门R、气库C负载的声阻抗、压缩机输出声功以及压缩机电声本文档来自技高网
...
一种间接测量线性压缩机弹簧刚度和动子质量的方法

【技术保护点】
一种间接测量线性压缩机弹簧刚度和动子质量的方法,其特征在于,包括:在压缩机出口连接声学负载,对整个系统充压,在保证声学负载的声阻抗实部不变的条件下,检测至少两组不完全相同的声阻抗虚部和角频率数据,结合压缩机谐振条件,计算得到弹簧刚度及动子质量;所述角频率数据为压缩机的电声转换效率最高时对应的角频率。

【技术特征摘要】
1.一种间接测量线性压缩机弹簧刚度和动子质量的方法,其特征在于,包括:在压缩机出口连接声学负载,对整个系统充压,在保证声学负载的声阻抗实部不变的条件下,检测至少两组不完全相同的声阻抗虚部和角频率数据,结合压缩机谐振条件,计算得到弹簧刚度及动子质量;所述角频率数据为压缩机的电声转换效率最高时对应的角频率,所述两组不完全相同的声阻抗虚部和角频率数据分别为第一个声阻抗虚部Xa1、第一个角频率ω1以及第二个声阻抗虚部Xa2、第二个角频率ω2;将两组数据分别带入如下两个计算式,得到所述的弹簧刚度及动子质量:式(1)和式(2)中,A为活塞面积,||表示绝对值;ks为线性压缩机的板弹簧刚度,M为线性压缩机的动子质量。2.根据权利要求1所述的间接测量线性压缩机弹簧刚度和动子质量的方法,其特征在于,压缩机电声转换效率最高时,压缩机达到谐振,得到所述式(1)和式(2)。3.根据权利要求2所述的间接测量线性压缩机弹簧刚度和动子质量的方法,其特征在于,所述声学负载包括通过管路与所述压缩机出口连通的气库,以...

【专利技术属性】
技术研发人员:王龙一甘智华尹成厚植晓琴王建军金泽远
申请(专利权)人:浙江大学
类型:发明
国别省市:浙江;33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1