一种基于切换的异轨星间天线及其捕获跟踪方法技术

技术编号:10711501 阅读:102 留言:0更新日期:2014-12-03 16:16
一种基于切换的异轨星间天线及其捕获跟踪方法,所述的天线包括微波切换组件和天线阵列;天线阵列由N个窄波束天线阵元组成;微波切换组件具有2个设备耦合接口记为P1、P2和N个天线耦合接口,设备耦合口P1通过双工器分别与星上发射机及接收机相连,另一个设备耦合口P2与信号探测器相连;一个窄波束天线阵元与一个天线耦合接口相连,每个设备耦合接口能够与所有的天线耦合接口之间分别形成射频通路;各窄波束天线阵元的电轴指向各不相同,在空间中呈放射状,相邻两个窄波束天线阵元的波束覆盖范围有重叠,整个天线阵列满足卫星在轨相对位置变化时,波束覆盖范围的需要。

【技术实现步骤摘要】

本专利技术涉及一种异轨卫星星间天线设计及捕获跟踪过程。
技术介绍
卫星编队或卫星星座在完成空间组网任务时,常常涉及到在异轨卫星间构建星间链路。异轨卫星存在高速的相对运动,构建星间链路时,需要星间天线能够实时依据卫星的相对位置,调整天线指向。指向的调整速度必须满足卫星相对运动的需要。天线指向的调整分为两个阶段:初始捕获阶段和跟踪阶段。在初始捕获阶段,星间天线需在较大的空间范围内探测入射信号,初步确定入射波的入射方向;在跟踪阶段,星间天线需要自动辨识跟踪电磁波入射角度的变化,依据对入射角变化的情况实时调整天线的指向,使得天线指向始终与入射波波达方向保持一致,确保通信过程的连续性。 目前,我国卫星编队或卫星星座使用的异轨星间通信天线多采用反射面配合机械伺服驱动机构。受机械惯性的限制,机械伺服驱动机构捕获与跟踪速度都较慢。在初始捕获阶段,机械伺服机构无法在较大范围内搜索入射信号,必须依据卫星轨道,计算出目标指向位置,并将天线粗略指向该目标方向,在该目标方向小范围内进行搜索;在跟踪阶段,伺服机构的转动速度较慢,不能满足在高速相对运动卫星间构建星间链路的需要。
技术实现思路
本专利技术的技术解决问题是:克服现有技术的不足,提出了一种基于切换的异轨星间天线设计形式及其捕获跟踪方法。该天线设计不依赖于卫星轨道测定,克服了反射面转动天线机械驱动机构捕获、跟踪速度慢的缺点。 本专利技术的技术解决方案是:一种基于切换的异轨星间天线,包括微波切换组件和天线阵列;天线阵列由N个窄波束天线阵元组成;微波切换组件具有2个设备耦合接口记为P1、P2和N个天线耦合接口,设备耦合口P1通过双工器分别与星上发射机及接收机相连,另一个设备耦合口P2与信号探测器相连;一个窄波束天线阵元与一个天线耦合接口相连,每个设备耦合接口能够与所有的天线耦合接口之间分别形成射频通路;各窄波束天线阵元的电轴指向各不相同,在空间中呈放射状,相邻两个窄波束天线阵元的波束覆盖范围有重叠,整个天线阵列满足卫星在轨相对位置变化时,波束覆盖范围的需要。 一种利用上述异轨星间天线实现的捕获跟踪方法,步骤如下: (1)在需要建立异轨星间链路的两颗卫星上分别安装权利要求1所述的天线,其中天线阵列的安装确保在轨时,两颗星分别在对方天线阵列波束的覆盖范围内;两颗卫星分别记为A星和B星,A星作为信标方,B星作为捕获方; (2)A星发射机发射信标信号XA,A星上的微波切换组件按照预设的扫描图样控制切换与设备耦合接口P1对应的射频通路,使得P1对应的射频通路上的窄波束天线阵元按照预设的扫描图样进行扫描; (3)B星的信号探测器连续探测信标信号XA的强度,B星上的微波切换组件按照预设的扫描图样控制切换设备耦合接口P2对应的射频通路,使得P2对应的射频通路上的窄波束天线阵元按照预设的扫描图样进行扫描,当信号探测器探测到信标信号时,微波切换开关将探测到信标信号射频通路对应的天线阵元TB接入设备耦合接口P1的接收机,同时由发射机向A星发射确认信号ACKB; (4)A星接收机接收到确认信号ACKB后,A星微波切换组件停止切换设备耦合接口P1对应的射频通道,将当前连通的天线阵元记为TA;A星发射机开始向B星发射有效数据; (5)B星接收机接收有效数据,并在接收的同时由发射机向A星发送信标信号XB;之后,A星直接执行步骤(a)的处理,B星直接进入步骤(b)的处理; (a)A星上信号探测器连续探测信标信号XB,并由微波切换组件切换设备耦合接口P2对应的射频通路使得与信号探测器相连的天线阵元为当前天线阵元TA相邻的阵元,判断探测到的信标信号XB的强度是否优于天线阵元TA对应的信号强度,若优于,则A星停止向B星发送有效数据,转而发送信标信号XA至B星,并将天线阵元切换至信号强度优的阵元,该信号强度优的阵元作为新的天线阵元TA,切换完成后,恢复向B星发送有效数据,并返回步骤(5);否则,A星继续发送有效数据至B星,并返回步骤(5); (b)B星上信号探测器连续探测来自A星的有效信号,并由微波切换组件切换设备耦合接口P2对应的射频通路使得与信号探测器相连的天线阵元为当前天线阵元TB相邻的阵元,判断探测到的信号强度是否优于天线阵元TB对应的信号强度,若优于,则通知A星停止发射有效数据,并将天线阵元切换至信号强度优的阵元,该信号强度优的阵元作为新的天线阵元TB,切换完成后通知A星继续发送有效数据,返回步骤(5)继续执行;否则,B星继续接收A星发射的有效数据,返回步骤(5)继续执行。 本专利技术与现有技术相比有益效果为: (1)本专利技术的捕获过程,完全使用信号检测的方式,具有很强的星上自主能力,不依赖于卫星轨道测定或对方卫星的先验信息,减少了地面测控的复杂性。这一设计同时简化了星上信息流程,省去了轨道信息的传递过程,避免了依据轨道进行指向计算的复杂计算过程; (2)本专利技术的捕获过程使用微波切换扫描的方式,相对于机械捕获装置具有捕获速度快的优点。 (3)本专利技术的跟踪设备没有机械伺服机构,不受机械惯性的影响,最大跟踪速度快,能够最大限度地满足星座内(或编队内)卫星高速相对运动的需要。 附图说明 图1为本专利技术方法的原理图; 图2为阵列天线设计图; 图3为阵元波束覆盖范围重叠设计; 图4为微波切换组件设计图; 图5为扫描图样。 具体实施方式 下面结合附图对本专利技术做详细说明。本专利技术一种基于切换的异轨星间天线,如图1所示,包括微波切换组件和天线阵列;天线阵列由N个窄波束天线阵元组成,依据指向角的需求可设计成线阵列或面阵列;微波切换组件如图4所示具有2个设备耦合接口(记为P1、P2)和N个天线耦合接口,P1口通过双工器分别与星上发射机及接收机相连,P2口与信号探测器相连;一个窄波束天线阵元与一个天线耦合接口相连,P1口和P2口均可通过微波切换开关与任意天线阵元形成射频通路。各窄波束天线阵元的电轴指向各不相同,在空间中呈放射状如图2所示,相邻两个窄波束天线阵元的波束覆盖范围有重叠,如图3所示,整个天线阵列满足卫星在轨相对位置变化时,波束覆盖范围的需要。 本文档来自技高网...

【技术保护点】
一种基于切换的异轨星间天线,其特征在于:包括微波切换组件和天线阵列;天线阵列由N个窄波束天线阵元组成;微波切换组件具有2个设备耦合接口记为P1、P2和N个天线耦合接口,设备耦合口P1通过双工器分别与星上发射机及接收机相连,另一个设备耦合口P2与信号探测器相连;一个窄波束天线阵元与一个天线耦合接口相连,每个设备耦合接口能够与所有的天线耦合接口之间分别形成射频通路;各窄波束天线阵元的电轴指向各不相同,在空间中呈放射状,相邻两个窄波束天线阵元的波束覆盖范围有重叠,整个天线阵列满足卫星在轨相对位置变化时,波束覆盖范围的需要。

【技术特征摘要】
1.一种基于切换的异轨星间天线,其特征在于:包括微波切换组件和天线
阵列;天线阵列由N个窄波束天线阵元组成;微波切换组件具有2个设备耦合
接口记为P1、P2和N个天线耦合接口,设备耦合口P1通过双工器分别与星
上发射机及接收机相连,另一个设备耦合口P2与信号探测器相连;一个窄波
束天线阵元与一个天线耦合接口相连,每个设备耦合接口能够与所有的天线耦
合接口之间分别形成射频通路;各窄波束天线阵元的电轴指向各不相同,在空
间中呈放射状,相邻两个窄波束天线阵元的波束覆盖范围有重叠,整个天线阵
列满足卫星在轨相对位置变化时,波束覆盖范围的需要。
2.一种利用权利要求1所述异轨星间天线实现的捕获跟踪方法,其特征在
于步骤如下:
(1)在需要建立异轨星间链路的两颗卫星上分别安装权利要求1所述的天
线,其中天线阵列的安装确保在轨时,两颗星分别在对方天线阵列波束的覆盖
范围内;两颗卫星分别记为A星和B星,A星作为信标方,B星作为捕获方;
(2)A星发射机发射信标信号XA,A星上的微波切换组件按照预设的扫
描图样控制切换与设备耦合接口P1对应的射频通路,使得P1对应的射频通路
上的窄波束天线阵元按照预设的扫描图样进行扫描;
(3)B星的信号探测器连续探测信标信号XA的强度,B星上的微波切换
组件按照预设的扫描图样控制切换设备耦合接口P2对应的射频通路,使得P2
对应的射频通路上的窄波束天线阵元按照预设的扫描图样进行扫描,当信号探
测器探测到信标信号时,微波切换开关将探测到信标信号射频通路对应的天线
阵元TB接入设备耦合接口P1...

【专利技术属性】
技术研发人员:赵黎晔蒙薇王淼高杰李红宝
申请(专利权)人:航天东方红卫星有限公司
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1