当前位置: 首页 > 专利查询>南开大学专利>正文

基于FPGA和DSP的原子力显微镜硬件控制系统技术方案

技术编号:10421000 阅读:191 留言:0更新日期:2014-09-12 11:52
一种基于现场可编程门阵列和数字信号处理器的原子力显微镜硬件控制系统。针对原子力显微镜扫描时,因硬件控制系统运行速度过慢导致的扫描速度过慢的问题。本发明专利技术首先提出了全新的原子力显微镜控制方案,并提出了以现场可编程门阵列(FPGA)和数字信号处理器(DSP)为核心的硬件控制系统架构,然后根据该方案设计了相关的硬件电路系统,包括模数和数模转换模块、FPGA核心控制模块和DSP核心控制模块。与现有控制系统相比,该发明专利技术更好地利用了数字逻辑器件各自的优点,并设计了相应的高速高精度转换电路,弥补了传统方案扫描速度过慢、外围电路精度不高的缺点。实验结果表明,该发明专利技术可以更快速且更高精度地完成扫描。

【技术实现步骤摘要】
基于FPGA和DSP的原子力显微镜硬件控制系统
本专利技术属于微纳科学与技术研究中的精密仪器领域,具体为原子力显微镜(AFM),本专利技术主要涉及一种基于现场可编程门阵列和数字信号处理器的原子力显微镜硬件控制系统。
技术介绍
原子力显微镜属于扫描探针显微镜的一种,通过检测微悬臂针尖和样品间的作用力造成的微悬臂的微小形变,控制探针与样品间的作用力(或轻敲模式下的探针振幅)保持恒定,然后通过对控制电压,控制误差,和其它相关因素的综合分析,便可计算出样品的表面形貌。原子力显微镜的成像精度和成像速度是目前研究者们最关心的两个问题[1,2]。无论是从机械结构还是控制算法角度提升原子力显微镜性能,必须有速度足够快和精度足够高的控制系统将各个部分联系起来,既能及时采集扫描信息,又能快速处理并传输控制信号,使整个原子力显微镜系统真正快速有效地工作。因此,原子力显微镜硬件控制系统设计成为了相关研究进展的关键。较为普遍的控制系统架构主要有基于PC-单片机[3]、PC-DSP(DigitalSignalProcessor,数字信号处理器)[4][5]或PC-FPGA(FieldProgrammableGateArray,现场可编程逻辑门阵列)[6]的控制系统,其思想都是利用单片机/DSP/FPGA实现控制器结构,利用PC完成成像和交互。但是,单片机、DSP和FPGA擅长的工作领域并不相同,导致控制系统性能不够完善,影响成像精度和速度。
技术实现思路
本专利技术的目的是解决原子力显微镜扫描速度过慢和精度过低的问题,提出了一种基于现场可编程逻辑门阵列和数字信号处理器(以下简称FPGA+DSP)的原子力显微镜硬件控制系统。本专利技术致力于通过对原子力显微镜样品表面形貌计算过程的充分分析,利用实验测得的压电扫描管阶跃响应曲线中包含的压电扫描管动态特性信息,以实现对压电扫描管输入信号数据和控制误差的动态处理,从而改善原子力显微镜在快速扫描过程中的成像精度。为了提高硬件控制系统的控制效果,本专利技术提出了基于FPGA+DSP的控制系统设计方案,原因是,FPGA具有丰富的逻辑模块和输入输出模块,并具有静态可重复编程和动态系统重构的特性,可以通过修改软件来改变硬件功能,擅长数据逻辑和时序处理,而DSP具有强大的数据处理能力和较高的运算速度,可以实现快速控制算法。因此FPGA+DSP的方案利用了二者各自的优势,相比于之前的各种控制系统方案更为全面。本专利技术提供的基于FPGA+DSP的原子力显微镜硬件控制系统,整体架构如图1所示包括:模拟数字转换电路模块,共有8路,其中4路与原子力显微镜的激光检测及信号处理部分连接,用于采集原子力显微镜的激光光斑位置信号;1路与原子力显微镜的外置传感器连接,采集传感器输出信号;3路与压电陶瓷的三维传感器连接,采集三维传感器输出信号;该8路模拟数字转换电路将以上单元采集到的模拟信号转换为数字信号输出给现场可编程门阵列电路模块;现场可编程门阵列电路模块,通过外设接口与模拟数字转换电路连接,用于采集模拟数字转换电路输出的数字信息,并通过DSP接口与数字信号处理器电路连接,将以上采集到的数字信息传输给数字信号处理器,同时采集数字信号处理器输出的控制量信息,通过外设接口与数字模拟转换电路连接,将以上采集到的控制量信息通过现场可编程门阵列电路传输给数字模拟转换电路;数字信号处理器电路模块,与现场可编程门阵列电路连接,用于采集现场可编程门阵列电路输出的数字信息,并将该数字信息进行算法计算得到控制量信息,再将控制量信息通过给现场可编程门阵列电路传输给数字模拟转换电路;数字模拟转换电路模块,与现场可编程门阵列电路连接,用于采集现场可编程门阵列电路输出的控制量信息,并转换为模拟电压信号输出,其中1路信号与驱动第一压电陶瓷的第一功率放大器连接,3路与驱动第二压电陶瓷的第二功率放大器连接,3路与第三压电陶瓷连接,数字模拟转换电路输出的模拟电压信号均作为压电陶瓷驱动电压。由激光检测部分得到的光斑位置信息、二级平台的电容传感器输出的位置信息以及压电陶瓷3传感器输出的三维位置信息均需经过采集、幅值调整、模数转换得到供核心控制系统使用的数字信息,经FPGA的外设接口传递给FPGA,在FPGA中,根据DSP的需求,选择某一通路,按一定时序输出给DSP进行算法计算,得到的控制信号返回给FPGA,由FPGA按一定时序输出给数模转换部分,再经幅值调整后作用到被控制的设备上,同时控制信号经USB接口输出给PC,在PC中作为成像信息得到样品表面形貌。本专利技术的优点和积极效果:本专利技术提出了一种基于现场可编程门阵列和数字信号处理器的原子力显微镜硬件控制系统。与传统的基于PC或基于PC-FPGA、PC-DSP的控制系统相比,该专利技术更好地利用了不同嵌入式的优势,提出了更加合理的硬件控制方案,且相应的模拟和数字信号转换电路的位数更高,进而提高成像精度。附图说明图1是原子力显微镜硬件控制系统整体架构示意图;图2是原子力显微镜硬件控制系统电路设计模块框图。具体实施方式实施例1如图1所示,基于现场可编程门阵列和数字信号处理器的原子力显微镜硬件控制系统包括:模拟数字转换电路模块,共有8路,其中4路与原子力显微镜的激光检测及信号处理部分连接,用于采集原子力显微镜的激光光斑位置信号;1路与原子力显微镜的外置传感器连接,采集传感器输出信号;3路与压电陶瓷的三维传感器连接,采集三维传感器输出信号;该8路模拟数字转换电路将以上单元采集到的模拟信号转换为数字信号输出给现场可编程门阵列电路模块;现场可编程门阵列电路模块,通过外设接口与模拟数字转换电路连接,用于采集模拟数字转换电路输出的数字信息,并通过DSP接口与数字信号处理器电路连接,将以上采集到的数字信息传输给数字信号处理器,同时采集数字信号处理器输出的控制量信息,通过外设接口与数字模拟转换电路连接,将以上采集到的控制量信息通过现场可编程门阵列电路传输给数字模拟转换电路;数字信号处理器电路模块,与现场可编程门阵列电路连接,用于采集现场可编程门阵列电路输出的数字信息,并将该数字信息进行算法计算得到控制量信息,再将控制量信息通过给现场可编程门阵列电路传输给数字模拟转换电路;数字模拟转换电路模块,与现场可编程门阵列电路连接,用于采集现场可编程门阵列电路输出的控制量信息,并转换为模拟电压信号输出,其中1路信号与驱动第一压电陶瓷的第一功率放大器连接,3路与驱动第二压电陶瓷的第二功率放大器连接,3路与第三压电陶瓷连接,数字模拟转换电路输出的模拟电压信号均作为压电陶瓷驱动电压。本专利技术具体设计内容如图2所示,包括:模拟数字信号转换模块;现场可编程门阵列(FPGA)模块;数字信号处理器(DSP)模块;数字模拟信号转换模块。各模块具体功能及设计如下:模拟数字信号转换模块由电源电路、电压幅值转换电路和模数转换(ADC)电路组成。电源电路由3块TPS7A4901芯片和1块TPS7A3001芯片,分别提供+15V、+12V、+5V和-15V电源电压。电压幅值转换电路作用是将从激光检测部分采集到的光斑位置信号、电容传感器输出信号、压电陶瓷3的三维传感器输出信号的幅值范围变换到模拟数字转换芯片可以接受的输入信号幅值范围之内,每一路模拟数字转换均需一路电压幅值转换,电压幅值变本文档来自技高网...
基于FPGA和DSP的原子力显微镜硬件控制系统

【技术保护点】
一种基于现场可编程门阵列和数字信号处理器的原子力显微镜硬件控制系统,其特征在于该硬件控制系统包括:模拟数字转换电路模块,共有8路,其中4路与原子力显微镜的激光检测及信号处理部分连接,用于采集原子力显微镜的激光光斑位置信号;1路与原子力显微镜的外置传感器连接,采集传感器输出信号;3路与压电陶瓷的三维传感器连接,采集三维传感器输出信号;该8路模拟数字转换电路将以上单元采集到的模拟信号转换为数字信号输出给现场可编程门阵列电路模块;现场可编程门阵列电路模块,通过外设接口与模拟数字转换电路连接,用于采集模拟数字转换电路输出的数字信息,并通过DSP接口与数字信号处理器电路连接,将以上采集到的数字信息传输给数字信号处理器,同时采集数字信号处理器输出的控制量信息,通过外设接口与数字模拟转换电路连接,将以上采集到的控制量信息通过现场可编程门阵列电路传输给数字模拟转换电路;数字信号处理器电路模块,与现场可编程门阵列电路连接,用于采集现场可编程门阵列电路输出的数字信息,并将该数字信息进行算法计算得到控制量信息,再将控制量信息通过给现场可编程门阵列电路传输给数字模拟转换电路;数字模拟转换电路模块,与现场可编程门阵列电路连接,用于采集现场可编程门阵列电路输出的控制量信息,并转换为模拟电压信号输出,其中1路信号与驱动第一压电陶瓷的第一功率放大器连接,3路与驱动第二压电陶瓷的第二功率放大器连接,3路与第三压电陶瓷连接,数字模拟转换电路输出的模拟电压信号均作为压电陶瓷驱动电压。...

【技术特征摘要】
1.一种基于现场可编程门阵列和数字信号处理器的原子力显微镜硬件控制系统,其特征在于该硬件控制系统包括:模拟数字转换电路模块,共有8路,其中4路与原子力显微镜的激光检测及信号处理部分连接,用于采集原子力显微镜的激光光斑位置信号;1路与原子力显微镜的外置传感器连接,采集传感器输出信号;3路与压电陶瓷的三维传感器连接,采集三维传感器输出信号;该8路模拟数字转换电路将以上单元采集到的模拟信号转换为数字信号输出给现场可编程门阵列电路模块;现场可编程门阵列电路模块,通过外设接口与模拟数字转换电路连接,用于采集模拟数字转换电路输出的数字信息,并通过DSP接口与数字信号处理器电路连接,将以上采集到的数字信息传输给数字信号处理器,同时采集数字信号处理器输出的控制量信息,通过外设接口与数字模拟转换电路连接,将以上采集到的控制量信息通过现场可编程门阵列电路传输给数字模拟转换电路;数字信号处理器电路模块,与现场可编程门阵列电路连接,用于采集现场可编程门阵列电路输出的数字信息,并将该数字信息进行算法计算得到控制量信息,再将控制量信息通过现场可编程门阵列电路传输给数字模拟转换电路;数字模拟转换电路模块,与现场可编程门阵列电路连接,用于采集现场可编程门阵列电路输出的控制量信息,并转换为模拟电压信号输出,其中1路信号与驱动第一压电陶瓷的第一功率放大器连接,3路与驱动第二压电陶瓷的第二功率放大器连接,3路与第三压电陶瓷连接,数字模拟转换电路输出的模拟电压信号均作为压电陶瓷驱动电压。2.根据权利要求1所述的原子力显微镜硬件控制系统,其特征在于,所述的模拟数字转换电路模块,包括与原子力显微镜的激光检测部分连接的接口、4路模拟数字转换(ADC)电路、与原子力显微镜的外置电容传感器连接的外设接口、1路模拟数字转换(ADC)电路、与第三压电陶瓷的三维传感器连接的外设接口、3路模拟数字转换(ADC)电路以及与现场可编程门阵列电路连接的外设接口:其中,与原子力显微镜的激光检测连接的接口和4路模数转换电路相连,与原子力显微镜的外置电容传感器连接的外设接口和1路模数转换电路相连,与第三压电陶瓷的三维传感器连接的外设接口与3路模数转换电路相连,以上8路模数转换电路均与现场可编程门阵列电路模块通过接口连接。3.根据权利要求2所述的原子力显微镜硬件控制系统,其特征在于,与原子力显微镜的激光检测连接的接口为5X2、2.54mm插针;与原子力显微镜的外置电容传感器连接的外设接口为1个2X1、2.54mm插针;与第三压电陶瓷的三维传感器连接的外设接口为3个2X1、2.54mm插针;模拟数字转换采用芯片AD769...

【专利技术属性】
技术研发人员:方勇纯吴桐张雪波张一淳
申请(专利权)人:南开大学
类型:发明
国别省市:天津;12

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1