闭合形状的磁性隧道结制造技术

技术编号:10367184 阅读:181 留言:0更新日期:2014-08-28 11:05
本发明专利技术提供了一种闭合形状的磁性隧道结。包括磁性固定层、磁性自由层以及设置在磁性固定层和磁性自由层之间的阻挡层;磁性自由层包括至少一组复合子层;复合子层由第一磁性层/非磁性层/第二磁性层组成。通过在磁性隧道结中设置具有至少一组复合子层的磁性自由层,由于该磁性自由层与参考层的磁矩成闭合状且磁性自由层包括至少一组复合子层,可消除层间和相邻单元的杂散磁场、避免层间和相邻单元间的磁性耦合干扰,增强了铁磁耦合自由层的形状各向异性,提高了热稳定性,降低了临界电流密度,避免了使用外磁场或者由较大脉冲电流产生的合成磁场来操控磁化状态所带来的结构和工艺上的复杂性,满足大规模产品化的要求。

【技术实现步骤摘要】
闭合形状的磁性隧道结
本专利技术涉及磁性隧道结
,特别是涉及一种闭合形状的磁性隧道结。
技术介绍
20世纪80年代以巨磁电阻(Giant Magnetoresistane,GMR)的发现为标志的自旋电子学诞生,自此,以磁性多层膜为研究核心的自旋电子学迅速发展。巨磁电阻现象最早发现于1988年,Baibich等人在低温下的反铁磁稱合的Fe/Cr多层膜中发现了 50%左右的磁电阻变化率。种情况下多层膜处于高阻态。通过施加足够强的外场克服反铁磁耦合后,Fe层的磁矩都会沿外场方向平行排列,这种情形多层膜处于低阻态。这种通过施加外场而使相邻铁磁层磁矩的相对取向发生变化,从而引起电阻变化的效应就称之为巨磁电阻效应。GMR效应由于其高的磁电阻比值和高灵敏度而广泛应用于磁电阻性传感器。基于GMR效应的器件具有灵敏度高、体积小、功耗低、抗辐射等优点。特别是GMR应用于计算机读出磁头,使数据存储密度呈指数增长,给计算机信息存储领域带来一场深刻的变革。继GMR效应发现之后,室温下的巨大隧穿磁电阻(Tunneling Magnetoresistance, TMR)效应于1995年被发现,掀本文档来自技高网...

【技术保护点】
一种闭合形状的磁性隧道结,包括磁性固定层(10)、磁性自由层(20)以及设置在所述磁性固定层(10)和所述磁性自由层(20)之间的阻挡层(30);所述磁性自由层(20)包括至少一组复合子层(21);所述复合子层(21)由第一磁性层(211)/非磁性层(212)/第二磁性层(213)组成。

【技术特征摘要】
1.一种闭合形状的磁性隧道结,包括磁性固定层(10)、磁性自由层(20)以及设置在所述磁性固定层(10)和所述磁性自由层(20)之间的阻挡层(30); 所述磁性自由层(20)包括至少一组复合子层(21);所述复合子层(21)由第一磁性层(211)/非磁性层(212)/第二磁性层(213)组成。2.根据权利要求1所述的磁性隧道结,其特征在于,所述磁性自由层(20)包括多组所述复合子层(21);其中,多组所述复合子层(21)依次排列。3.根据权利要求1或2所述的磁性隧道结,其特征在于,所述磁性自由层(20)中所含的所述复合子层(21)的组数< 5。4.根据权利要求1至3中任一项所述的磁性隧道结,其特征在于,所述非磁性层(212)为非磁性金属层,所述非磁性金属层选自Ta、Cu、Cr、V、Nb、Mo、Ru、Pd、Ta、W、Pt、Ag、Au中的一种或多种合金。5.根据权利要求1至4中任一项所述的磁性隧道结,其特征在于,所述非磁性层(212)的厚度使得所述第一磁性层(211)和所述第二磁性层(213)形成铁磁耦合;可选地,所述非磁性层(212)的厚度0.2?2.5nm。6.根据权利要求1至4中任一项所述的磁性隧道结,其特征在于,所述非磁性层(212)的厚度使得所述第一磁性层(211)和所述第二磁性层(213)形成反铁磁耦合;可选地,所述非磁性层(212)的厚度为0.2?2.5nm。7.根据权利要求1至3中任一项所述的磁性隧道结,其特征在于,...

【专利技术属性】
技术研发人员:陶丙山李大来刘厚方韩秀峰
申请(专利权)人:中国科学院物理研究所
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1