QWIP-LED与EMCCD间采用光纤耦合的红外成像探测系统技术方案

技术编号:10211479 阅读:210 留言:0更新日期:2014-07-12 17:39
本发明专利技术公开了一种QWIP-LED与EMCCD间采用光纤耦合的红外成像探测系统,系统使用光纤传像束将QWIP-LED红外上转换得到的近红外图像耦合到EMCCD进行成像,实现长波红外目标的EMCCD探测。本系统的优点是:一方面使用光纤传像束可以有效地提高红外图像从QWIP-LED向EMCCD的传输效率,从而使得系统的探测效率更高;另外一方面探测系统的空间尺寸可以得到明显减小。

【技术实现步骤摘要】
【专利摘要】本专利技术公开了一种QWIP-LED与EMCCD间采用光纤耦合的红外成像探测系统,系统使用光纤传像束将QWIP-LED红外上转换得到的近红外图像耦合到EMCCD进行成像,实现长波红外目标的EMCCD探测。本系统的优点是:一方面使用光纤传像束可以有效地提高红外图像从QWIP-LED向EMCCD的传输效率,从而使得系统的探测效率更高;另外一方面探测系统的空间尺寸可以得到明显减小。【专利说明】QWIP-LED与EMCCD间采用光纤耦合的红外成像探测系统
:本专利涉及一种红外成像探测系统。具体是指一种QWIP-LED与EMCXD间采用光纤耦合的红外成像探测系统,该技术可用于长波红外成像探测领域。
技术介绍
:红外上转换技术一直以来是各国研究人员的一个研究热点,其目的是为了将目标的中长波红外光辐射转变成近红外光或者可见光图像信息,然后用商用CCD或者CMOS进行成像,替代价格昂贵的传统红外面阵探测器。现有的红外上转换技术有热激红外上转换、参量红外上转换、稀土材料红外上转换和TO-LED红外上转换技术等。从工艺成本、量子效率、响应波段范围以及应用成本来讲I3D-LED都具有显著优势。PD-LED结构上是由H)(光电效应)面板与LED面板粘合串联组成,整个器件工作在恒定偏压下。正常工作时,PD区域吸收入射红外光产生载流子,载流子在偏压作用下流向LED区域,与空穴发生复合效应激发出近红外光,实现红外光的频率上转换。PD-LED的典型代表是QWIP-LED,该器件可将入射的长波红外光(7.8 μ m)转变成近红外光(870nm)输出。基于QWIP-LED器件的红外成像探测系统的光学分系统由两部分组成,分别是长波红外光学系统和近红外光学系统。长波红外光学系统作用是收集目标所发出的长波红外辐射,成像于QWIP-LED器件的QWIP区域。近红外光学系统的作用是收集QWIP-LED器件发出的近红外光,成像于EMCXD。近红红外光学系统一般采用传统光学方案实现,其缺点是近红外系统光学效率低下,具体表现在两个方面:首先,由于QWIP-LED具有较高的材料折射率(QWIP-LED约为3.5),大部分出射的近红外光在LED与空气的界面上发生了全发射,使得光出射率极低,对于QWIP-LED器件该值低于2% (1/η2);其次,对于从QWIP-LED成功出射的近红外光,传统光学系统最多只有10%的收集能力,使得最终到达EMCCD的近红外光不足0.2%。光学效率低下是制约QWIP-LED广泛工程应用的主要因素,如何提高基于QWIP-LED的红外成像探测系统的光学效率是研究人员的重要研究课题。使用光纤传像束进行光学耦合的研究已经进行了多年,取得了飞速的发展。光纤传像束以其自身优势(长度和空间自由度大、数值孔径大以及无像差等)在工业检测监控、医疗诊断以及军事等领域已经有了广泛的应用。具体来说光纤传像束在图像分辨率、数值孔径以及透过率等光学指标都具有优异性能。图像分辨率是光纤传像束的重要指标,决定该指标的主要因素是单根光纤束的直径以及光纤束的排列方式。高分辨率意味着光纤束直径一定要小,目前国内可批量生产的光纤传像束的单根光纤束直径可达4 μ m,已达到国际先进水平。另一方面,研究表明正三角形排列的光纤传像束具有最高的图像分辨率,比正方形排列方式高15%。数值孔径代表光学系统集光能力,是光纤传像束另外一个重要指标。与传统光学系统相对应,光纤的数值孔径由纤芯材料折射率Ii1和包层材料折射率n2决定,表达式为NA=Vn12 -< ,纤芯与包层材料折射率分别为1.787和1.520时,光纤的数值孔径可达0.9396,远大于传统光学系统可达到的水平。透过率是光纤传像束的第三个重要指标,其主要决定因素是器件制备过程中包层材料与纤芯材料的相互渗透所形成的缺陷。通过优化制备工艺,国内所研制的光纤传像束能达到的透过率在90%以上。
技术实现思路
:基于以上技术背景,本专利技术提出一种QWIP-LED与EMCXD间采用光纤耦合的红外成像探测系统。该方法使用光纤传像束进行QWIP-LED与EMCCD之间的光耦合。一方面光纤传像束的大数值孔径、高透射率以及高分辨率等特性以及光学胶粘剂的使用可以使得近红外光可在QWIP-LED与EMCCD之间实现高效耦合;另外一方面使用光纤传像束可以大大减小近红外光学系统的空间尺寸。本专利提出了基于光纤传像束实现QWIP-LED与EMCXD之间近红外光耦合的红外成像探测系统,其实现示意图如图1所示。本系统构成由长波红外光学系统1,QWIP-LED2,光纤传像束3,EMCXD4,电子学单元5,上位机6组成。所说的长波红外光学系统I是指基于传统光学的光学系统,其光学参数如焦距、F数等可根据实际应用需求进行设计。所说的QWIP-LED2是指一种具有红外上转换功能的探测器,可将目标景物的像从长波红外波段搬移到近红外波段,以LED发光的方式输出图像。所说的光纤传像束3在本系统中用于实现近红外光学系统。光纤传像束横截面积要大于等于EMCCD光敏面面积。采用特殊光学胶粘剂将光纤面板的一个端面粘合到QWIP-LED的LED出射面上,另外一端面粘合到EMCXD光接收面上。近红外光学系统的具体实现要按照如下要求:I).光纤传像束的选择:长度无限严格限定,可根据制冷难度等因素做调整;单根光纤束的直径小于EMCCD的像元尺寸,选择在4-6 μ m的范围;光纤排列选择正三角紧密排列方式。纤芯材料对近红外波段的透过率高于90%。2).光学胶黏剂的选择:折射率接近光纤纤芯材料折射率;低温下有足够的韧性,在低温40K的环境下依然保持良好的特性;在近红外波段有很好的透过率,达到90%以上。3).光纤传像束3与QWIP-LED、EM(XD的粘合连接:将光纤传像束的一个端面粘合到QWIP-LED的光出射面,将另一端面粘合到EMCCD的光敏面。所述的光纤传像束3单根光纤直径小于EMCXD像元尺寸;光纤排列选择正三角紧密排列方式,纤芯材料对近红外波段的透过率高于90%。光学胶粘剂的折射率与光纤材料折射率相同,近红外波段透过率高于90% ;光纤传像束在与EMCCD粘合时,胶粘剂中掺入少量的直径与单根光纤直径相近且折射率与光学胶粘剂相同的玻璃微珠。对QWIP-LED发出的光进行成像探测属于微光探测的范畴,为实现更高探测率,选择EMCCD作为系统电子学图像的获取单元。所说的电子学单元5,其主要功能是为EMCCD提供驱动时序、为AD模块提供驱动时序、获取EMCCD输出图像、进行图像预处理以及实现图像数据向上位机端的高速传输。所说的上位机6,其作为系统的用户终端,主要提供指令发送,图像接收与显示,数据存储,图像处理等功能。本专利技术的优点在于:1.一方面光纤传像束的自身特性使得本系统能够将QWIP-LED所转换来的近红外图像高光学效率地成像于EMCXD ;另外一方面近红外光学系统的安装方式使得QWIP-LED器件的输出光在入射EMCCD之前不再经过折射率较低的空气介质,使得QWIP-LED与EMCCD之间有着更闻的光I禹合效率。该系统可使得红外探测率明显提闻。2.光纤传像束的使用大大降低了系统中近红外光学系统的尺寸,从而见减小了整个成像探测系统的空间尺寸,为系统本文档来自技高网
...

【技术保护点】
一种QWIP‑LED与EMCCD间采用光纤耦合的红外成像探测系统,系统包括:长波红外光学系统(1)、QWIP‑LED(2)、光纤传像束(3)、EMCCD(4),电子学单元(5)和上位机(6),其特征在于:所述的QWIP‑LED(2)与EMCCD(4)之间采用光纤传像束进行光学耦合;所述的光纤传像束(3)单根光纤直径4‑6μm;光纤排列选择正三角紧密排列方式,纤芯材料对近红外波段的透过率高于90%。

【技术特征摘要】

【专利技术属性】
技术研发人员:侯义合张冬冬丁雷刘加庆谭婵朱学谦周巨广
申请(专利权)人:中国科学院上海技术物理研究所
类型:发明
国别省市:上海;31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1