当前位置: 首页 > 专利查询>南京大学专利>正文

一种基于OFDR的土体张拉力学特性光纤监测与测试方法及装置制造方法及图纸

技术编号:20093146 阅读:21 留言:0更新日期:2019-01-15 12:36
本发明专利技术涉及一种基于OFDR的土体张拉力学特性光纤监测与测试方法及装置,所述应变感测光纤沿水平向铺设于土梁中;所述的试验仪主要由反力支架、加载系统、OFDR信号解调与处理模块、数字图像采集与分析装置组成,OFDR信号解调与处理模块与土梁中的应变感测光纤连接,实时采集土梁内部的应变分布数据,显示光波量和土梁强度等,数字图像采集与分析装置追踪土梁表面的位置变化,得到土梁受力变形后的应变场和位移场,和光纤测得数据互相校核。本发明专利技术能实时监测四点弯曲试验过程中土梁表面以及内部的开裂变形信息以及拉压应变的时空演化规律,测定不同含水率、干密度等条件下土体的抗拉强度,掌握土体受拉后的弹塑性应力‑应变本构关系。

An Optical Fiber Monitoring and Testing Method and Device for Soil Tensile Mechanical Properties Based on OFDR

The present invention relates to an optical fiber monitoring and testing method and device for soil tension mechanical properties based on OFDR. The strain sensing optical fiber is laid horizontally in the soil beam. The tester is mainly composed of reaction bracket, loading system, demodulation and processing module of OFDR signal, digital image acquisition and analysis device, demodulation and processing module of OFDR signal and strain sensing light in soil beam. Fiber connection, real-time acquisition of strain distribution data within the soil beam, display of light wave volume and strength of the soil beam, digital image acquisition and analysis device to track the change of the position of the soil beam surface, get the strain and displacement field of the soil beam after stress and deformation, and check each other with the data measured by optical fiber. The invention can real-time monitor the cracking and deformation information of the surface and interior of the soil beam during the four-point bending test and the temporal and spatial evolution law of the tension and compression strain, determine the tensile strength of the soil under different water content and dry density conditions, and master the elastic-plastic stress-strain constitutive relationship of the soil after tension.

【技术实现步骤摘要】
一种基于OFDR的土体张拉力学特性光纤监测与测试方法及装置
本专利技术涉及岩土体受力变形、强度试验技术,以及分布式光纤监测工程
,具体涉及一种基于OFDR的土体张拉力学特性光纤监测与测试方法及装置。
技术介绍
张拉力学特性是岩土介质的基本力学性质之一,在岩土体变形与破坏的过程中起着非常重要的作用,由此也产生了诸多与之相关的岩土工程问题。土体的抗拉强度与抗压强度、抗剪强度等指标一样,都是衡量其力学性质的重要参数。土体在形成过程中,原岩的完整性、整体性均遭到不同程度的破坏,力学性质上表现为还具有一定的抗压强度、抗剪强度,但强度值已大大降低,而抗拉强度则大部分或几乎完全丧失。在以往的工程实践中,主要基于土体的抗压或者抗剪强度衡量其力学性质或在荷载下的抗破坏能力,因为与抗压、抗剪强度相比,抗拉强度在数值上要小得多,而且难以准确测量,工程中一般选择忽视这一强度指标。这种忽视在大多数情况下表现为0基质吸力和0拉应力负荷,是对于土体强度的一种较为保守的估计,在当代的岩土工程设计中亟须改进。此外,实际工程中遇到的土体破坏模式主要表现为剪切破坏,如滑坡和地基土失稳等。然而,土体在拉应力作用下发生张拉破坏并出现裂隙的现象也很常见,如边坡后缘的张拉裂隙、土石坝心墙在土拱作用下的拉裂破坏、干燥环境中土体出现的龟裂现象、地裂缝的发育等,一些输电线路铁塔和风电塔在水平荷载作用下也容易引起周边土体发生张拉破坏。裂隙的存在会极大破坏土体结构的完整性,弱化力学性质,降低稳定性,增加渗透性,加剧蒸发,加重坡面水土流失和风化等,给岩土工程和环境岩土工程带来一系列负面影响。土体之所以出现张拉裂隙,是因为张拉应力超过了土体自身的抗拉强度。因此,监测土体张拉开裂过程中的应力、应变变化规律,测定其抗拉强度,在此基础上系统掌握土体的张拉破坏机理、预防土体开裂有着重要工程意义,可有效提高相关地质灾害的防治水平,节省大量的人力物力。由于土体的张拉力学特性过去在岩土工程领域一直不受重视,研究报道相对较少,国内更是鲜见,已有的一些土体抗拉强度测试方法大多是借鉴了岩石、混凝土等其他材料领域。土体抗拉强度的试验方法可分为直接法和间接法两大类,直接法又分为单轴拉伸和三轴拉伸试验,间接法主要包括土梁弯曲试验、轴向压裂试验、径向压裂试验和气压劈裂试验4种方式。单轴拉伸和三轴拉伸试验分别在无侧限和三轴应力条件下向试样施加拉应力,直接测定峰值拉应力从而得到抗拉强度。间接法是基于一定理论假设,用压裂、弯折等方式进行试验,最后通过相应的理论公式计算得到抗拉强度。相对于三点弯曲试验中会出现应力集中的问题,土梁的四点弯曲试验中,土体受到的弯矩在荷载作用点之间为常数,因此拉应力分布比较均匀,是一种较为理想的试验方法。在这些试验中,拉应力可通过一定手段获取,但土体应变信息的获取却面临许多挑战。因为应变沿拉伸方向的分布不均,且存在许多不确定性,一般张拉应变在破坏面附近会发生集中,但采用传统的位移监测方法只能计算出试样的平均应变,与真实情况相差甚远。如果选择土木工程中常用的电阻应变片,又存在难以安装、对原位土体扰动大等问题。正是由于土体应变监测技术的空白,导致目前人们对土体张拉应力-应变本构关系认识不清,严重制约了该领域的理论研究和工程实践。近年来分布式光纤监测(DFOS)技术发展迅速,并在探测混凝土、沥青等材料的开裂中得到了一些成功的应用。借助准分布式光纤布拉格光栅(FBG)、全分布式布里渊光时域反射(BOTDR)和布里渊光时域分析(BOTDA)等监测技术,可以自动获取沿整根光纤长度方向上应变、温度等监测信息的分布情况。但是限于监测精度(一般为几十个微应变)、空间分辨率(一般为米级)和采样时间(一般需要十几分钟到几十分钟),该技术一直没有在土体开裂监测中被很好地利用。而OFDR(OpticalFrequencyDomainReflectometer)技术是近几年开始兴起的一个具有毫米级空间分辨率、1个微应变精度的尖端传感技术。与其它监测方法相比,OFDR具有数据采集量大、信噪比高、采样间隔小、所得结果精度高、适合长距离监测和高频采集等优点,所以在土体受拉开裂测量领域具有广阔的应用前景。最近国内外一些研究者尝试将应变感测光纤埋入待监测的土体中,基于光纤传感数据来分析土体的变形特征,或监测其是否干缩开裂。这些研究由于未采用特制的、标准化、集成化的测试设备,无法控制整个试验过程和边界条件,因此只能得到一些定性的结论,对工程参考意义不大。由于试验时间长,光纤读数还受到环境温度、湿度等影响,分析结果的可靠性较差。此外,直埋这一方法在施工上较为便捷,但是土体和应变感测光纤之间的相互作用机理和协调变形问题无法保证,同时对于应变感测光纤的选用和锚固点的设置也没有科学依据,因而光纤应变监测结果的有效与否具有很大的不确定性,极大程度上制约了该技术在工程中的推广应用。基于OFDR技术,可以在土体开裂过程中对微变形进行高精度、高空间分辨率的监测,并对土体和应变感测光纤之间的界面变形协调特征进行精细化分析,在此基础上进一步优化传感器布设工艺、提高监测可靠性。
技术实现思路
针对现有技术的不足,本专利技术的目的是提供一种基于OFDR的土体张拉力学特性光纤监测与测试方法及装置。本专利技术采用了如下技术方案:一种基于OFDR的土体张拉力学特性光纤监测与测试装置,包括试验土梁、试验仪、应变感测光纤;所述的试验仪包括机箱外壳、反力支架、加载板、调速驱动装置、OFDR信号解调与处理模块、数字图像采集与分析装置,所述的机箱外壳内部设有调速驱动装置,调速驱动装置与测力计和加载板连接,加载板能够沿机箱外壳的内壁垂直方向上下移动,在加载板和反力支架之间放置试验土梁,应变感测光纤沿水平方向穿过试验土梁,应变感测光纤通过信号传输光纤与OFDR信号解调与处理模块连通,数字图像采集与分析装置的数字图像采集窗口对应试验土梁的试验观测面。调速驱动装置包括步进电机、变速箱。数字图像采集与分析装置包含高速摄像机和计算机。所述的加载板两端设有滚轮。一种采用基于OFDR的土体张拉力学特性光纤监测与测试装置的方法,包括步骤如下:第一步,制备试验土梁:在土梁压制模具中根据给定的干密度分层压制土梁,当土梁压制到应变感测光纤的布设位置时,将应变感测光纤依次穿过土梁压制模具箱体侧面光纤穿透孔布设于土体中,适当悬挂重物使其处于轻微受拉状态,然后继续根据给定的干密度填土压制;第二步,标记土样:将压制完毕的土梁取出,在试验观测面,密集扎下针孔,并以此作为土梁表面纹理,然后自然风干或烘干到需要的含水率,覆膜;第三步,连接OFDR信号解调与处理模块:揭开土梁覆膜,横置于试验仪的加载板上,将所有应变感测光纤采用并联或串联的方式相互连接后接至OFDR信号解调与处理模块的接口上;第四步,开始试验:依次打开OFDR信号解调与处理模块、数字图像采集与分析装置、调速驱动装置的开关,调速驱动装置推动加载板以设定速度向下运动,试验土梁随之发生四点弯曲;OFDR信号解调与处理模块实时获取并呈现土梁内部的应变分布状态;数字图像采集与分析装置实时追踪土梁表面的纹理变化,获取土梁受力变形后的应变场和位移场;第五步,数据处理:基于实测数据,建立土体张拉应力-应变本构关系,获取土体的抗拉强度本文档来自技高网
...

【技术保护点】
1.一种基于OFDR的土体张拉力学特性光纤监测与测试装置,其特征在于,包括试验土梁(4)、试验仪(14)、应变感测光纤(3);所述的试验仪(14)包括机箱外壳(12)、反力支架(13)、加载板(5)、调速驱动装置、OFDR信号解调与处理模块(1)、数字图像采集与分析装置(15),所述的机箱外壳(12)内部设有调速驱动装置,调速驱动装置与测力计(16)和加载板(5)连接,加载板(5)能够沿机箱外壳(12)的内壁垂直方向上下移动,在测力计(16)和反力支架(13)之间放置试验土梁(4),应变感测光纤(3)沿水平方向穿过试验土梁(4),应变感测光纤(3)通过信号传输光纤(2)与OFDR信号解调与处理模块(1)连通,数字图像采集与分析装置(15)的数字图像采集窗口对应试验土梁(4)的试验观测面。

【技术特征摘要】
1.一种基于OFDR的土体张拉力学特性光纤监测与测试装置,其特征在于,包括试验土梁(4)、试验仪(14)、应变感测光纤(3);所述的试验仪(14)包括机箱外壳(12)、反力支架(13)、加载板(5)、调速驱动装置、OFDR信号解调与处理模块(1)、数字图像采集与分析装置(15),所述的机箱外壳(12)内部设有调速驱动装置,调速驱动装置与测力计(16)和加载板(5)连接,加载板(5)能够沿机箱外壳(12)的内壁垂直方向上下移动,在测力计(16)和反力支架(13)之间放置试验土梁(4),应变感测光纤(3)沿水平方向穿过试验土梁(4),应变感测光纤(3)通过信号传输光纤(2)与OFDR信号解调与处理模块(1)连通,数字图像采集与分析装置(15)的数字图像采集窗口对应试验土梁(4)的试验观测面。2.根据权利要求1所述的基于OFDR的土体张拉力学特性光纤监测与测试装置,其特征在于,调速驱动装置包括步进电机(7)、变速箱(6)。3.根据权利要求1所述的基于OFDR的土体张拉力学特性光纤监测与测试装置,其特征在于,数字图像采集与分析装置(15)包含高速摄像机(8)和计算机(9)。4.根据权利要求1所述的基于OFDR的土体张拉力学特性光纤监测与测试装置,其特征在于,所述的加载板(5)两端设有滚轮。5.根据权利要求1所述的土体张拉力学特性光纤监测与测试装置,其特征在于,所述的信号解调与处理模块包括光纤解调仪、终端计算处理与可视化系统。6.一种采用权利要求1~5任一所述的基于OFDR的土体张拉力学特性光纤监测与测试装置的方法,其特征在于,包括步骤如下:第一步,制备试验土梁:在土梁压制模具中根据给定的干密度分层压制土梁,当土梁压制到应变感测光纤的布设位置时,将应变感测光纤依次穿过土梁压制模具箱体侧面光纤穿透孔布设于土体中,适当悬挂重物使其...

【专利技术属性】
技术研发人员:朱鸿鹄李豪杰周谷宇施斌
申请(专利权)人:南京大学
类型:发明
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1