一种基于波束域的双基地MIMO雷达测角优化方法技术

技术编号:19487646 阅读:26 留言:0更新日期:2018-11-17 11:41
本发明专利技术公开了一种基于波束域的双基地MIMO雷达测角优化方法,其思路为:确定双基地MIMO雷达,设定所述双基地MIMO雷达检测范围内存在K个目标,设定一个相干处理间隔的脉冲数为Q;确定每个脉冲包含K个目标的信号矩阵后进行匹配滤波,进而构建矩阵信号模型;利用凸优化的方法设计得到发射波束矩阵以接收波束矩阵以及优化信号模型;确定信号子空间,得到K个目标的波离角估计值和K个目标的波达角估计值;确定发射阵列感兴趣的角度区域Θe内I个采样点的映射角度值和接收阵列感兴趣的角度区域Θr内I个采样点的映射角度值;进而得到K个目标的波离角真实值和K个目标的波达角真实值后记为一种基于波束域的双基地MIMO雷达测角优化结果。

【技术实现步骤摘要】
一种基于波束域的双基地MIMO雷达测角优化方法
本专利技术属于雷达参数估计
,特别涉及一种基于波束域的双基地MIMO雷达测角优化方法,适用于双基地MIMO雷达中的波离角和波达角估计。
技术介绍
MIMO雷达是近年来提出的一种新体制雷达,它借鉴了在通信领域得到广泛应用的多输入多输出技术,具有一些独特的优势。MIMO雷达可以分为统计MIMO雷达和集中式MIMO雷达两个大类,统计MIMO雷达天线阵列各阵元之间有较大间隔,利用空间分集技术,各个发射阵元发射信号之间不相关,利用空间分集与发射分集技术形成多个通道,使雷达反射起伏面对MIMO雷达造成的影响大大降低;集中式MIMO雷达发射阵元和接收阵元都紧密排列,各发射阵元发射相互正交的信号,在空间中形成宽波束,利用波形分集技术和多个通道相干处理,相比传统相控阵雷达,可以改善弱目标和低速目标检测性能,并且能对更多的目标进行角度估计。虽然统计MIMO雷达利用空间分集技术获得比集中式MIMO雷达更好的目标检测与参数估计性能,但在工程实现上还有许多尚未解决的问题;而波形分集技术比空间分集技术更容易实现,因此集中式MIMO雷达在工程上得到更为广泛的应用。双基地MIMO雷达系统结构示意图如图1所示,双基地MIMO雷达发射和接收阵列分置,能够在接收端获得发射方位角信息和接收方位角信息,双基地MIMO雷达的方位角估计时进行目标定位研究的重点内容,目标相对于发射阵列的方位角称为波离角,目标相对于接收阵列的方位角称为波达角。在双基地MIMO雷达系统中,发射站、接收站与目标在同平面内构成一个三角形;因此要确定目标方位,只需要估计目标的波离角与波达角,两个角度相交的位置即为目标的位置。现阶段双基地MIMO雷达的测角方法主要是基于子空间类的算法,其中最经典的就是MUSIC和ESPRIT算法,MUSIC算法需要进行二维谱峰搜索,运算量巨大;ESPRIT算法利用了发射和接收阵列的不变性结构,避免谱峰搜索,计算量小;由于在实际情况中,目标的大体位置基本可知,尤其是在跟踪问题中,在此情况下,波束域算法常常被用来提高测角精度。文献“BeamspaceESPRITalgorithmforbistaticMIMOradar”中介绍了一种基于波束域的ESPRIT算法,该种基于波束域的ESPRIT算法利用傅里叶变换矩阵将接收信号从阵元域转换到波束域从而达到提高测角精度的目的;然而,由于其采用的空域滤波器是由几个傅里叶变换波束合成的,其主瓣宽度和旁瓣电平不能进行有效的控制,造成主副瓣比过低,这是传统波束域ESPRIT测角方法的一个显著缺点。
技术实现思路
针对上述现有技术存在的不足,本专利技术的目的在于提出一种基于波束域的双基地MIMO雷达测角优化方法,该种基于波束域的双基地MIMO雷达测角优化方法能够有效提高目标测角精度。本专利技术的主要思路:本专利技术在现有波束域ESPRIT算法基础上,通过对空域滤波器进行设计,使其带宽可以按照我们的需求进行设计;与此同时,滤波器的旁瓣电平也可以进行有效的抑制,从而达到提高主副瓣比的目的;最后由于求解凸优化问题时存在插值误差,这会降低测角性能,因此本专利技术通过建立映射关系的方法对测量的角度值进行误差补偿。为达到上述技术目的,本专利技术采用如下技术方案予以实现。一种基于波束域的双基地MIMO雷达测角优化方法,包括以下步骤:步骤1,确定双基地MIMO雷达,设定所述双基地MIMO雷达检测范围内存在K个目标,并且所述双基地MIMO雷达包括发射阵列和接收阵列,设定一个相干处理间隔的脉冲数为Q;确定每个脉冲包含K个目标的信号矩阵后进行匹配滤波,进而构建矩阵信号模型;其中,K和Q分别为大于0的正整数;步骤2,利用凸优化的方法设计得到发射波束矩阵以接收波束矩阵;步骤3,根据矩阵信号模型、发射波束矩阵以及接收波束矩阵,得到优化信号模型;步骤4,根据优化信号模型,确定信号子空间;步骤5,根据信号子空间,得到K个目标的波离角估计值和K个目标的波达角估计值;步骤6,确定发射阵列感兴趣的角度区域Θe内I个采样点的映射角度值和接收阵列感兴趣的角度区域Θr内I个采样点的映射角度值;其中,I为大于0的正整数;步骤7,根据步骤5和步骤6得到的结果,得到K个目标的波离角真实值和K个目标的波达角真实值,所述K个目标的波离角真实值和K个目标的波达角真实值为一种基于波束域的双基地MIMO雷达测角优化结果。本专利技术与现有技术相比具有以下优点:第一,本专利技术利用凸优化设计发射和接收空域滤波器,能够根据需求自由调整空域滤波器带宽。第二,本专利技术进行完波束域转化后,在保证不变性结构的同时能够有效的对空域滤波器的旁瓣电平进行限制。第三,本专利技术建立映射关系对测得的角度值进行误差补偿。附图说明为了更清楚地说明本专利技术实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本专利技术的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。图1是双基地MIMO雷达系统结构示意图;图2是本专利技术实施例提供的一种基于波束域的双基地MIMO雷达测角优化方法流程图;图3是本专利技术方法设计的发射空域滤波器与传统发射空域滤波器的幅频响应对比图;图4是本专利技术方法设计的接收空域滤波器与传统接收空域滤波器的幅频响应对比图;图5是均方根误差随着信噪比的变化情况示意图;图6是均方根误差随着脉冲数的变化情况示意图。具体实施方式下面将结合本专利技术实施例中的附图,对本专利技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本专利技术一部分实施例,而不是全部的实施例。基于本专利技术中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本专利技术保护的范围。参照图1,本专利技术具体实施步骤如下:步骤1,对接收天线接收到的目标回波信号进行混频和等间隔采样,之后进行匹配滤波,并将数据组合成期望的结构模型。步骤1具体包括如下子步骤:(1a)由于实际情况是先检测的目标后再对目标进行角度估计,所以选择的样本应该都包括目标;确定双基地MIMO雷达,设定所述双基地MIMO雷达检测范围内存在K个目标,并且所述双基地MIMO雷达包括发射阵列和接收阵列,假设一个相干处理间隔的脉冲数为Q,发射阵列的阵元数为M,接收阵列的阵元数为N;分别定义第k个目标的波离角为θk,定义第k个目标的波达角为k=1,2,…,K。对双基地MIMO雷达接收阵列接收到的回波信号进行混频和等间隔采样,之后进行匹配滤波,并取多个脉冲的数据,那么第q个脉冲包含K个目标的信号矩阵Xq可以表示为:Xq=BΛqATS+Nq其中,q=1,2,…,Q,[·]T表示矩阵或向量的转置,A表示每个脉冲中K个目标的发射导向矩阵,A=[a(θ1),a(θ2),…,a(θk),…,a(θK)],a(θk)表示每个脉冲中第k个目标的发射导向矢量,B表示每个脉冲中K个目标的接收导向矩阵,表示每个脉冲中第k个目标的接收导向矢量;当发射阵列和接收阵列均为半波长等距线阵时,S表示发射阵列的发射波形,S=[s1(t),s2(t),…,sm(t),…,sM(t)]T,发射阵列的发射波形S包括M个元素,M个元素中第m个元素为sm(t本文档来自技高网
...

【技术保护点】
1.一种基于波束域的双基地MIMO雷达测角优化方法,其特征在于,包括以下步骤:步骤1,确定双基地MIMO雷达,设定所述双基地MIMO雷达检测范围内存在K个目标,并且所述双基地MIMO雷达包括发射阵列和接收阵列,设定一个相干处理间隔的脉冲数为Q;确定每个脉冲包含K个目标的信号矩阵后进行匹配滤波,进而构建矩阵信号模型;其中,K和Q分别为大于0的正整数;步骤2,利用凸优化的方法设计得到发射波束矩阵以接收波束矩阵;步骤3,根据矩阵信号模型、发射波束矩阵以及接收波束矩阵,得到优化信号模型;步骤4,根据优化信号模型,确定信号子空间;步骤5,根据信号子空间,得到K个目标的波离角估计值和K个目标的波达角估计值;步骤6,确定发射阵列感兴趣的角度区域Θe内I个采样点的映射角度值和接收阵列感兴趣的角度区域Θr内I个采样点的映射角度值;其中,I为大于0的正整数;步骤7,根据步骤5和步骤6得到的结果,得到K个目标的波离角真实值和K个目标的波达角真实值,所述K个目标的波离角真实值和K个目标的波达角真实值为一种基于波束域的双基地MIMO雷达测角优化结果。

【技术特征摘要】
1.一种基于波束域的双基地MIMO雷达测角优化方法,其特征在于,包括以下步骤:步骤1,确定双基地MIMO雷达,设定所述双基地MIMO雷达检测范围内存在K个目标,并且所述双基地MIMO雷达包括发射阵列和接收阵列,设定一个相干处理间隔的脉冲数为Q;确定每个脉冲包含K个目标的信号矩阵后进行匹配滤波,进而构建矩阵信号模型;其中,K和Q分别为大于0的正整数;步骤2,利用凸优化的方法设计得到发射波束矩阵以接收波束矩阵;步骤3,根据矩阵信号模型、发射波束矩阵以及接收波束矩阵,得到优化信号模型;步骤4,根据优化信号模型,确定信号子空间;步骤5,根据信号子空间,得到K个目标的波离角估计值和K个目标的波达角估计值;步骤6,确定发射阵列感兴趣的角度区域Θe内I个采样点的映射角度值和接收阵列感兴趣的角度区域Θr内I个采样点的映射角度值;其中,I为大于0的正整数;步骤7,根据步骤5和步骤6得到的结果,得到K个目标的波离角真实值和K个目标的波达角真实值,所述K个目标的波离角真实值和K个目标的波达角真实值为一种基于波束域的双基地MIMO雷达测角优化结果。2.如权利要求1所述的一种基于波束域的双基地MIMO雷达测角优化方法,其特征在于,在步骤1中,所述每个脉冲包含K个目标的信号矩阵,具体表示为第q个脉冲包含K个目标的信号矩阵Xq:Xq=BΛqATS+Nq其中,q=1,2,…,Q,[·]T表示矩阵或向量的转置,A表示每个脉冲中K个目标的发射导向矩阵,A=[a(θ1),a(θ2),…,a(θk),…,a(θK)],θk表示第k个目标的波离角,k=1,2,…,K,a(θk)表示每个脉冲中第k个目标的发射导向矢量,B表示每个脉冲中K个目标的接收导向矩阵,表示第k个目标的波达角,表示每个脉冲中第k个目标的接收导向矢量,S表示发射阵列的发射波形,S=[s1(t),s2(t),…,sm(t),…,sM(t)]T,发射阵列的发射波形S包括M个元素,M个元素中第m个元素为sm(t),sm(t)表示发射阵列中第m个阵元的发射波形,T'表示发射阵列中每个阵元的发射波形长度,t表示时间变量;Nq表示第q个脉冲的噪声矩阵,Λq表示第q个脉冲的对角矩阵,Λq=diag(cq),cq表示K个目标在第q个脉冲的反射系数向量,cq=[α1,q,α2,q,…,αk,q,…,αK,q]T,αk,q表示第k个目标在第q个脉冲的反射系数,diag表示取对角操作,m=1,2,…,M,M表示发射阵列包括的阵元总数。3.如权利要求2所述的一种基于波束域的双基地MIMO雷达测角优化方法,其特征在于,在步骤1中,所述矩阵信号模型,其得到过程为:(1a)对第q个脉冲包含K个目标的信号矩阵Xq右乘SH进行匹配滤波后,得到匹配滤波后第q个脉冲包含K个目标的信号矩阵Yq:其中,表示匹配滤波后第q个脉冲的噪声矩阵,[·]H表示矩阵或向量的共轭转置;然后,将匹配滤波后第q个脉冲包含K个目标的信号矩阵Yq按列组合成一个向量,得到匹配滤波后第q个脉冲包含K个目标的信号向量yq:其中,⊙表示Khatri-Rao积,cq表示K个目标在第q个脉冲的反射系数向量;令q的值分别取1至Q,进而分别得到匹配滤波后第1个脉冲包含K个目标的信号向量y1至匹配滤波后第Q个脉冲包含K个目标的信号向量yQ、K个目标在第1个脉冲的反射系数向量c1至K个目标在第Q个脉冲的反射系数向量cQ,以及匹配滤波后第1个脉冲的噪声矩阵至匹配滤波后第Q个脉冲的噪声矩阵分别记为匹配滤波后Q个脉冲的信号矩阵Z、K个目标在Q个脉冲的反射系数矩阵C,以及匹配滤波后Q个脉冲的噪声矩阵Z=[y1,y2,…,yQ],C=[c1,c2,…,cQ],(1b)根据匹配滤波后Q个脉冲的信号矩阵Z、K个目标在Q个脉冲的反射系数矩阵C,以及匹配滤波后Q个脉冲的噪声矩阵构建矩阵信号模型:4.如权利要求3所述的一种基于波束域的双基地MIMO雷达测角优化方法,其特征在于,在步骤2中,所述发射波束矩阵,具体为的发射波束矩阵We,通过求解下列凸优化问题得到:其中,Θe表示发射阵列感兴趣的角度区域,表示发射阵列感兴趣的角度区域Θe的补集角度区域,θj表示发射阵列感兴趣的角度区域Θe的补集角度区域内第j个采样点的角度值,θi表示发射阵列感兴趣的角度区域Θe内第i个采样点的角度值,I表示发射阵列感兴趣的角度区域Θe的采样点总个数,J表示发射阵列感兴趣的角度区域Θe的补集角度区域的采样点总个数,α表示第一正参数,0<α<1;∈表示属于,s.t.表示约束条件;M表示发射阵列包括的阵元总个数;所述接收波束矩阵,具体为的接收波束矩阵Wr,通过求解下列凸优化问题得到:其中,Θr表示接收阵列感兴趣的角度区域,表示接收阵列感兴趣的角度区域Θr的补集角度区域,表示接收阵列感兴趣的角度区域Θr的补集角度区域内第j个采样点的角度值,表示接收阵列感兴趣的角度区域Θr内第i个采样点的角度值,I表示发射阵列感兴趣的角度区域Θe的采样点总个数,与接收阵列感兴趣的角度区域Θr的采样点总个数取值相等;J表示发射阵列感兴趣的角度区域Θe的补集角度区域的采样点总个数,与接收阵列感兴趣的角度区域Θr的补集角度区域的采样点总个数取值相等;β表示第二正参数,0<β<1;N表示接收阵列包括的阵元总个数,5.如权利要求4所述的一种基于波束域的双基地MIMO雷达测角优化方法,其特征在于,所述Θe表示发射阵列感兴趣的角度区域,表示发射阵列感兴趣的角度区域Θe的补集角度区域,其确定过程分别为:设定双基地MIMO雷达相对于发射阵列的角度探测范围为[δmin,δmax],δmin表示双基地MIMO雷达相对于发射阵列的角度探测最小值,δmax表示双基地MIMO雷达相对于发射阵列的角度探测最大值,然后将双基地MIMO雷达相对于发射阵列的角度探测范围[δmin,δmax]以设定角度间隔△δ划分为两个发射角度探测区域,记为第一发射角度探测区域[δmin,δ]和第二发射角度探测区域[δ,δmax],δ-δmin=δmax-δ=△δ;对第一发射角度探测区域[δmin,δ]和第二发射角度探测区域[δ,δmax]分别进行空域滤波以探测目标,将探测到目标的所在区域,记为发射阵列感兴...

【专利技术属性】
技术研发人员:赵永波徐保庆何学辉刘宏伟苏洪涛苏涛
申请(专利权)人:西安电子科技大学
类型:发明
国别省市:陕西,61

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1