一种提高HVPE中III-氮化物材料掺杂效率的方法和装置制造方法及图纸

技术编号:18132056 阅读:43 留言:0更新日期:2018-06-06 07:38
一种提高HVPE中III‑氮化物材料掺杂效率的方法和装置,包括以下步骤:将衬底放置在支撑托上;将NH3气体从氨气输送管路输送至衬底表面;HCl气体从金属源输送管路输送,同时往金属源输送管路中输入掺杂源气体与HCl气体混合并在400~1400℃的反应温度下进行反应,然后再将气体输送到填充有金属源的金属源舟中,与金属源在500~1400℃的温度下反应,最后将气体输送到衬底表面与NH3气体反应进行III‑氮化物材料的掺杂生长。本发明专利技术实现可控高效稳定地掺杂,结构简单,成本低。

A method and device for improving the doping efficiency of III- nitride materials in HVPE

A method and device for improving the doping efficiency of III nitride materials in HVPE, including the following steps: placing the substrate on the support bracket, transporting the NH3 gas from the ammonia gas pipeline to the substrate surface, and transporting the HCl gas from the metal source pipeline and mixing the doping source gas to the HCl gas in the metal source pipeline. The reaction was carried out at the reaction temperature of 400~1400 C, then the gas was transported to the metal source filled with metal source, and the metal source was reacted at the temperature of 500~1400 C. Finally, the gas was transported to the substrate surface to react with the NH3 gas to carry out the doping growth of the III nitride material. The invention is controllable and efficient and stable, and has simple structure and low cost.

【技术实现步骤摘要】
一种提高HVPE中III-氮化物材料掺杂效率的方法和装置
本专利技术属于半导体材料
,具体地说是一种提高HVPE中III-氮化物材料掺杂效率的方法和装置。
技术介绍
由于以GaN基半导体材料为代表的III-氮化物是直接带隙(带隙宽度为0.7-6.2eV)并涵盖了紫外、可见光和红外;同时其还具有击穿电压高、电子饱和漂移速率大、热导率高和化学性质稳定等优良物理特性,因此GaN基半导体材料在光电子、光伏以及微电子功率器件等领域有着非常广阔的应用前景,已然成为世界的研究热点。目前HVPE的外延速率可达百微米/小时,是制备GaN体单晶材料的主流技术。根据应用方向的不同,需要对其掺杂而获得N型、P型和半绝缘型等材料。但是对于易分解的掺杂源(如硅烷、SiH3Cl、二茂铁和二茂镁等),因HVPE反应腔结构的问题导致其无法像MOCVD生长系统那样进行正常稳定的掺杂。因为MOCVD喷淋头温度低且其距离衬底很近(一般小于2cm),而HVPE设备由于需要多温区加热,采用的是高腔设计,掺杂源气体需要经过较长的石英管道才能到达衬底表面。而掺杂源气体在石英管道内的输运过程中遇到一定的温度时就会分解,从而严重降低到达衬底表面的实际掺杂源浓度,进而影响晶体中所设计的载流子浓度。以硅烷为例,其超过400℃分解后形成的Si单质会沉积在石英管内壁,且其自催化效应又会进一步加剧硅烷的分解,从而造成随着生长的进行其载流子浓度越来越低。有研究小组采用高温下比较稳定的SiH2Cl2进行N型掺杂,但是其在重掺阶段会降低晶体的生长速率。采用合金的方式也可以进行掺杂,但是合金源的成本太高。在HVPE中将掺杂源气体走金属源这路管道则可以有效解决掺杂效率低下的问题,同时结构简单而又不增加额外成本。
技术实现思路
本专利技术要解决的技术问题是种提高HVPE中III-氮化物材料掺杂效率的方法和装置,实现可控高效稳定地掺杂,结构简单,成本低。为了解决上述技术问题,本专利技术采取以下技术方案:一种提高HVPE中III-氮化物材料掺杂效率的方法,包括以下步骤:HCl气体从金属源输送管路输送,同时往金属源输送管路中输入掺杂源气体与HCl气体混合并在400~1400℃的反应温度下进行反应,然后再将气体输送到填充有金属源的金属源舟中,与金属源在500~1400℃的反应温度下反应,最后将气体输送到衬底表面与NH3气体反应进行III-氮化物材料的掺杂生长。所述金属源是单质金属Ga、Al或In,或者混合金属源。所述掺杂源气体为硅烷、SiH3Cl、二茂镁或二茂铁。一种提高HVPE中III-氮化物材料掺杂效率的装置,包括:支撑托,该支撑托上设置有衬底;氨气输送管路,该氨气输送管路的出口端延伸至衬底上方;金属源管路,该金属源管路的出口端延伸至衬底上方,金属源管路的进口端还与掺杂源气体管路连通,金属源管路与填充有金属源的金属源舟连通。所述金属源舟与金属源管路的进口端正对设置,与金属源管路的出口端错位设置。本专利技术具有以下有益效果:1.将掺杂源气体走金属源这路管道可以将掺杂源分解物重新转化为含氯的掺杂剂,可实现可控高效稳定地掺杂。2.装载金属源的空间可延长掺杂源分解后形成的单质与HCl反应的时间,促进其充分地转化为氯化物,避免其随气流输运直接落在衬底表面损害材料的晶体质量。3.结构简单,成本低。附图说明附图1为专利技术装置的结构示意图。具体实施方式为能进一步了解本专利技术的特征、技术手段以及所达到的具体目的、功能,下面结合附图与具体实施方式对本专利技术作进一步详细描述。一种提高HVPE中III-氮化物材料掺杂效率的方法,包括以下步骤:将衬底放置在支撑托上。将NH3气体从氨气输送管路输送至衬底表面,该氨气输送管路只用于输送NH3气体,使NH3气体在衬底表面聚集。HCl气体从金属源输送管路输送,同时往金属源输送管路中输入掺杂源气体与HCl气体混合并在400~1400℃的反应温度下进行反应,然后再将气体输送到填充有金属源的金属源舟中,与金属源在500~1400℃的反应温度下反应,最后将气体输送到衬底表面与NH3气体反应进行III-氮化物材料的掺杂生长。掺杂源气体属于易分解气体,此为本领域技术人员的公知技术,在此不再详细赘述。通过掺杂源气体和HCl气体混合输送,这使得掺杂源在被加热分解后的物质也能够和HCl气体反应,将其转化为氯化物,而此氯化物作为新的掺杂剂可对生长的晶体材料进行稳定的掺杂,从而彻底解决因分解导致的掺杂效率低下的问题。所述金属源是单质金属Ga、Al或In,或者混合金属源。可生长各种掺杂的单晶和合金,比如GaN、AlN、InN、AlGaN、InGaN以及AlInGaN等材料。所述掺杂源气体为硅烷、SiH3Cl、二茂镁或二茂铁。本专利技术将掺杂源气体13并入到HCl气体12的金属源管路中,并共同通往金属源舟2内,并且金属源3反应。是利用此该金属源管路中的HCl气体12将掺杂源气体的分解物转化为相应的氯化物,再和HCl气体12与金属源3反应生成的金属氯化物一起输送至衬底4表面,最后与NH3气体11反应进行III-氮化物材料的掺杂生长。因为HCl气体12将掺杂源气体13分解后形成的物质重新转化为相应的氯化物,而此氯化物比较稳定并可作为新的掺杂剂,从而可避免掺杂源的损耗,能大幅提高掺杂效率。另外,HCl气体12可能会将沉积在石英壁上的单质“刻蚀”下来,但是金属源舟2可以起到很好的收集作用并延长其随气流在金属源管路中的输运时间,促进其充分地与HCl气体12反应而完全转化为相应的氯化物。因而在生长各种掺杂类型的III-氮化物材料过程中则不会出现因掺杂剂的分解物掉落至衬底表面而损害外延质量现象。另外,本专利技术还揭示了一种提高HVPE中III-氮化物材料掺杂效率的装置,包括:支撑托5,该支撑托5上设置有衬底4。氨气输送管路,该氨气输送管路的出口端延伸至衬底上方,该氨气输送管路专门用于输送NH3气体11。金属源管路,该金属源管路的出口端延伸至衬底上方,金属源管路的进口端还与掺杂源气体管路连通,金属源管路与填充有金属源3的金属源舟2连通。氨气输送管路和金属源管路并排设置,两者输送的气体在衬底表面混合反应,进行生长。所述金属源舟与金属源管路的进口端正对设置,与金属源管路的出口端错位设置。金属源管路用于输送HCl气体12,掺杂源气体管路用于输送掺杂源气体13。需要说明的是,以上仅为本专利技术的优选实施例而已,并不用于限制本专利技术,尽管参照实施例对本专利技术进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但是凡在本专利技术的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本专利技术的保护范围之内。本文档来自技高网
...
一种提高HVPE中III-氮化物材料掺杂效率的方法和装置

【技术保护点】
一种提高HVPE中III‑氮化物材料掺杂效率的方法,包括以下步骤:HCl气体从金属源输送管路输送,同时往金属源输送管路中输入掺杂源气体与HCl气体混合并在400~1400℃的反应温度下进行反应,然后再将气体输送到填充有金属源的金属源舟中,与金属源在500~1400℃的反应温度下反应,最后将气体输送到衬底表面与NH3 气体反应进行III‑氮化物材料的掺杂生长。

【技术特征摘要】
1.一种提高HVPE中III-氮化物材料掺杂效率的方法,包括以下步骤:HCl气体从金属源输送管路输送,同时往金属源输送管路中输入掺杂源气体与HCl气体混合并在400~1400℃的反应温度下进行反应,然后再将气体输送到填充有金属源的金属源舟中,与金属源在500~1400℃的反应温度下反应,最后将气体输送到衬底表面与NH3气体反应进行III-氮化物材料的掺杂生长。2.根据权利要求1所述的提高HVPE中III-氮化物材料掺杂效率的方法,其特征在于,所述金属源是单质金属Ga、Al或In,或者混合金属源,所述的衬底放置在支撑托上,NH3从氨气输送管路输送至衬底表面。3.根据...

【专利技术属性】
技术研发人员:熊欢何进密刘南柳汪青张远浩
申请(专利权)人:东莞市中镓半导体科技有限公司
类型:发明
国别省市:广东,44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1