一种阀门动部件运动与碰撞仿真分析方法技术

技术编号:9866018 阅读:106 留言:0更新日期:2014-04-03 01:50
本发明专利技术涉及一种阀门动部件运动与碰撞仿真分析方法,根据阀门实用工况,构建阀门AMESim动特性仿真模型,选用合适的碰撞分析模型快,分析各运动部件的位移、速度、加速度,根据结构和各部件之间的相对的运动关系,判断部件之间是否会发生碰撞并给出部件之间发生碰撞时的相对速度,基于Abaqus的Dynamic?Explicit非线性模块分析部件之间的碰撞效应,给出碰撞时结构上的应力场分布,判断其是否会发生结构破坏,为设计或改进提供理论指导。

【技术实现步骤摘要】

本专利技术涉及,属于运载火箭增压输送系统阀门设计

技术介绍
阀门广泛应用于运载火箭的加注、排泄、排气等系统,阀门在工作过程中内部动部件的运动非常复杂,活阀与阀座、顶杆与阀杆、阀杆与限位、拉套结构等部件之间会发生碰撞,造成结构局部应力大于结构强度极限而导致结构发生破坏,在飞和在研型号的阀门均发生过类似故障,因此研究在实际工况中阀门内部各动部件的运动规律,判断各部件之间是否会发生碰撞,分析碰撞是否会对结构产生破坏越来越重要。而且随着型号研制要求的不断提高,研究一种能有效分析阀门内部各动部件的运动规律和部件之间的碰撞效应的分析方法为设计提供指导成为迫切的需要。
技术实现思路
本专利技术的目的在于克服现有技术的上述不足,提供,该方法可以分析阀门内部各动部件的运动规律,准确判断各动部件之间是否发生碰撞,给出发生碰撞的相对速度以及碰撞时结构上的应力分布,判断其是否会发生结构破坏,为设计或改进提供理论指导。本专利技术的上述目的主要是通过如下技术方案予以实现的:,包括如下步骤:步骤(一)、利用AMESim软件建立阀门动特性仿真模型,得到阀门动部件的运动特性,判断阀门动部件之间是否发生碰撞,若发生碰撞时,给出碰撞速度,具体实现方法如下:(I)、根据阀门结构组成,从AMESim软件中的气动元件库、热气动元件库、机械元件库、控制元件库、热元件库中选出需要的功能模块,并按照阀门结构的连接关系将选出的功能模块进行连接;(2)、从每个功能模块中选出一个需要的子模型,并根据需要选择理想气体模型、半理想气体模型、实际气体模型或自建物性模型;(3)、设置各个功能模块的计算参数,所述计算参数包括初值参数和状态参数,其中初值参数指所有变化物理量的初始值,状态参数为计算过程不变的参数;(4)、在AMESim软件的运行模式下设置分析模式、存储频率和容差,并选择运行模式和分析模式,从而完成阀门动特性仿真模型的建立;(5)、运行阀门动特性仿真模型,输出阀门动部件的位移随时间的变化曲线、速度随时间的变化曲线、相对位移随时间的变化曲线和相对速度随时间的变化曲线,得出阀门动部件之间的相对的运动关系;(6)、根据阀门结构和所述阀门动部件之间的相对的运动关系,判断阀门动部件之间是否发生碰撞,若发生碰撞,给出动部件碰撞时的相对速度,并进入步骤(二);步骤(二)、采用Abaqus软件中的Dynamic Explicit非线性模块,建立有限元分析模型,分析阀门动部件之间的碰撞应力场分布,具体实现方法如下:(I)、根据阀门结构组成,在Abaqus软件中建立阀门动部件的几何模型,模型采用实体单元;(2)、为阀门动部件的几何模型中各个结构部件赋予材料属性,所述材料属性包括弹性模量、屈服强度、破坏强度及延伸率;(3)、在分析步中选择 Dynamic Explicit ;(4)、分别设置边界条件及载荷条件,其中边界条件为部件阀门动部件的固定,载荷条件为碰撞时的相对速度;(5)、对Abaqus软件中建立阀门动部件的几何模型,采用二维四节点单元进行网格划分,建立有限元模型;(6)、运行有限兀模型,得出阀门动部件碰撞时结构上的应力场分布,输出结构上的最大应力;步骤(三)、根据步骤(二)中的最大应力进行判断,若最大应力值小于阀门动部件材料强度极限,则阀门动部件结构处于安全工作状态,若最大应力值大于阀门动部件材料强度极限,则对阀门动部件结构进行优化设计,重复步骤(一)、(二)对优化后的阀门结构进行分析,直至最大应力值小于阀门动部件材料强度极限。在上述阀门动部件运动与碰撞仿真分析方法中,步骤(一)的(4)中运行模式为批处理或标准运行类型,分析模式为时程分析。在上述阀门动部件运动与碰撞仿真分析方法中,步骤(一)的(4)步骤中完成阀门动特性仿真模型的建立后,对阀门动特性仿真模型进行调试,若调试过程中出现异常,根据提示进行模型修改;若调试过程中仿真结果与理论、经验公式、物理过程或试验数据对比出现不符合,检查模型选取和参数设置。在上述阀门动部件运动与碰撞仿真分析方法中,步骤(二)的(I)中,在Abaqus软件中建立阀门动部件的几何模型为轴对称模型。本专利技术与现有技术相比具有如下有益效果:(I)、本专利技术提出一种全新的阀门动部件运动与碰撞仿真分析方法,首先通过建立阀门AMESim动特性仿真模型得到阀门内部各动部件的运动规律,并采用Abaqus对阀门结构的碰撞过程进行仿真分析,形成了一套基于AMESim和Abaqus的可用于阀门动部件运动与碰撞的联合仿真分析方法,可广泛用于各种阀门动部件的运动规律研究和碰撞应力场分析;(2)本专利技术通过阀门AMESim动特性模型进行运动仿真,能够准确描述各动部件的运动规律,给出各运动部件的位移、速度、加速度,根据结构和各部件之间的相对的运动关系提出发生碰撞的判据,基于Abaqus的Dynamic Explicit非线性模块分析阀门部件之间的碰撞效应,该分析方法具有很好的通用性和工程应用价值,具有广阔的应用前景。(3)本专利技术阀门动部件运动与碰撞仿真分析方法采用AMESim软件和Abaqus软件进行联合仿真,可以准确计算分析阀门动特性,并对阀门的动部件的碰撞效应进行准确分析,从而为阀门结构设计提供可靠参考依据,且方法简单有效,易于实现。【附图说明】图1为本专利技术阀门动部件运动与碰撞仿真分析方法流程示意图。【具体实施方式】下面结合附图和具体实施例对本专利技术作进一步详细的描述:本专利技术通过构建阀门AMESim动特性仿真模型,研究阀门内部各动部件的运动规律,判断部件之间是否会发生碰撞,给出部件间发生碰撞的相对速度,采用Abaqus对结构的碰撞过程进行仿真分析,给出碰撞时结构上的应力分布,判断其是否会发生结构破坏,为设计或改进提供理论指导。本专利技术阀门动部件运动与碰撞仿真分析方法,包括如下步骤:步骤(一)、利用AMESim软件建立阀门动特性仿真模型,得到阀门动部件的运动特性,判断阀门动部件之间是否发生碰撞,若发生碰撞时,给出碰撞速度,具体实现方法如下:(I )、根据阀门结构组成,从AMESim软件中的气动元件库、热气动元件库、机械元件库、控制元件库、热元件库中选出需要的功能模块,并按照阀门结构的连接关系将选出的功能模块进行连接;(2)、从每个功能模块中选出一个需要的子模型,并根据需要选择理想气体模型、半理想气体模型、实际气体模型或自建物性模型;(3)、设置各个功能模块的计算参数,所述计算参数包括初值参数和状态参数,其中初值参数指的是所有变化物理量的初始值,状态参数为计算过程不变的参数;(4)、在AMESim软件的运行模式下设置分析模式、存储频率和容差,并选择运行模式和分析模式,从而完成阀门动特性仿真模型的建立;运行模式为批处理或标准运行类型,分析模式为时程分析。(5)、对阀门动特性仿真模型进行调试,计算过程中如果出现异常,可根据提示进行模型修改;仿真结果与理论、经验公式、物理过程或试验数据对比出现不符合,可以检查模型选取和参数设置,尽可能利用已有试验数据对模型进行验证,模型验证后,正式仿真中不应进行状态参数的调整。(6)、运行阀门动特性仿真模型,输出阀门动部件的位移随时间的变化曲线、速度随时间的变化曲线、相对位移随时间的变化曲线和相对速度随时间的变化曲线,得出阀本文档来自技高网...

【技术保护点】
一种阀门动部件运动与碰撞仿真分析方法,其特征在于:包括如下步骤:步骤(一)、利用AMESim软件建立阀门动特性仿真模型,得到阀门动部件的运动特性,判断阀门动部件之间是否发生碰撞,若发生碰撞时,给出碰撞速度,具体实现方法如下:(1)、根据阀门结构组成,从AMESim软件中的气动元件库、热气动元件库、机械元件库、控制元件库、热元件库中选出需要的功能模块,并按照阀门结构的连接关系将选出的功能模块进行连接;(2)、从每个功能模块中选出一个需要的子模型,并根据需要选择理想气体模型、半理想气体模型、实际气体模型或自建物性模型;(3)、设置各个功能模块的计算参数,所述计算参数包括初值参数和状态参数,其中初值参数指所有变化物理量的初始值,状态参数为计算过程不变的参数;(4)、在AMESim软件的运行模式下设置分析模式、存储频率和容差,并选择运行模式和分析模式,从而完成阀门动特性仿真模型的建立;(5)、运行阀门动特性仿真模型,输出阀门动部件的位移随时间的变化曲线、速度随时间的变化曲线、相对位移随时间的变化曲线和相对速度随时间的变化曲线,得出阀门动部件之间的相对的运动关系;(6)、根据阀门结构和所述阀门动部件之间的相对的运动关系,判断阀门动部件之间是否发生碰撞,若发生碰撞,给出动部件碰撞时的相对速度,并进入步骤(二);步骤(二)、采用Abaqus软件中的Dynamic?Explicit非线性模块,建立有限元分析模型,分析阀门动部件之间的碰撞应力场分布,具体实现方法如下:(1)、根据阀门结构组成,在Abaqus软件中建立阀门动部件的几何模型,模型采用实体单元;(2)、为阀门动部件的几何模型中各个结构部件赋予材料属性,所述材料属性包括弹性模量、屈服强度、破坏强度及延伸率;(3)、在分析步中选择Dynamic?Explicit;(4)、分别设置边界条件及载荷条件,其中边界条件为部件阀门动部件的固定,载荷条件为碰撞时的相对速度;(5)、对Abaqus软件中建立阀门动部件的几何模型,采用二维四节点单元进行网格划分,建立有限元模型;(6)、运行有限元模型,得出阀门动部件碰撞时结构上的应力场分布,输出结构上的最大应力;步骤(三)、根据步骤(二)中的最大应力进行判断,若最大应力值小于阀门动部件材料强度极限,则阀门动部件结构处于安全工作状态,若最大应力值大于阀门动部件材料强度极限,则对阀门动部件结构进行优化设计,重复步骤(一)、(二)对优化后的阀门结构进行分析,直至最大应力值小于阀门动部件材料强度极限。...

【技术特征摘要】
1.一种阀门动部件运动与碰撞仿真分析方法,其特征在于:包括如下步骤: 步骤(一)、利用AMESim软件建立阀门动特性仿真模型,得到阀门动部件的运动特性,判断阀门动部件之间是否发生碰撞,若发生碰撞时,给出碰撞速度,具体实现方法如下: (I )、根据阀门结构组成,从AMESim软件中的气动元件库、热气动元件库、机械元件库、控制元件库、热元件库中选出需要的功能模块,并按照阀门结构的连接关系将选出的功能模块进行连接; (2)、从每个功能模块中选出一个需要的子模型,并根据需要选择理想气体模型、半理想气体模型、实际气体模型或自建物性模型; (3)、设置各个功能模块的计算参数,所述计算参数包括初值参数和状态参数,其中初值参数指所有变化物理量的初始值,状态参数为计算过程不变的参数; (4)、在AMESim软件的运行模式下设置分析模式、存储频率和容差,并选择运行模式和分析模式,从而完成阀门动特性仿真模型的建立; (5)、运行阀门动特性仿真模型,输出阀门动部件的位移随时间的变化曲线、速度随时间的变化曲线、相对位移随时间的变化曲线和相对速度随时间的变化曲线,得出阀门动部件之间的相对的运动关系; (6)、根据阀门结构和所述阀门动部件之间的相对的运动关系,判断阀门动部件之间是否发生碰撞,若发生碰撞,给出动部件碰撞时的相对速度,并进入步骤(二); 步骤(二)、采用Abaqus软件中的Dynamic Explicit非线性模块,建立有限元分析模型,分析阀门动部件之间的碰撞应力场分布,具体实现方法如下: (1)、根据阀门结构组成,在Abaqus软件中建立阀门动部件的几何模型,模型采...

【专利技术属性】
技术研发人员:薛立鹏方红荣陈二锋叶超江海峰
申请(专利权)人:北京宇航系统工程研究所中国运载火箭技术研究院
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1