【技术实现步骤摘要】
基于相似度的乳腺图像的匹配图像检索方法及检索系统
本专利技术属于数字图像检索
,具体涉及一种基于相似度的乳腺图像的匹配图像检索方法及检索系统。
技术介绍
乳腺疾病是严重危害女性健康的一种疾病,目前乳腺癌已经占到女性新发恶性病的30%左右,排名女性恶性肿瘤发病率的第一位。乳腺X线照相术(Mammography)通过专门的钼钯X线机对乳房进行拍照形成乳腺X线片,目前使用乳腺X线片作为基础数据进行乳腺疾病的研究已经在发达国家成为使用最普遍的方式。乳腺癌X线片中病灶表示形式常见的有较规则或类圆形肿块、不规则或模糊肿块、毛刺肿块、透亮环肿块四类。计算机视觉领域的目标检测技术和人工智能领域的机器学习技术能够非常直观的应用在乳腺肿块的检测中,该技术通过对肿块区域和非肿块区域的训练学习,从乳腺X射线片中检测到疑似肿块区域。但由于目前机器学习技术和目标检测技术还不够不成熟,尤其是“语义鸿沟(SemanticGap)”问题还没有得到根本解决,现有的应用上述技术进行乳腺肿块区域自动检测的方法存在将肿块区域漏掉或者肿块部位不准确等问题。
技术实现思路
针对上述现有技术中存在的缺陷或不足 ...
【技术保护点】
一种基于相似度的乳腺图像的匹配图像检索方法,其特征在于,具体包括如下步骤:步骤1:建立图像特征库;具体步骤为:遍历图像库中保存的乳腺图像,利用SIFT算法对每幅乳腺图像提取SIFT特征块,并将每个符合规定尺度的SIFT特征块以特征块中心为定点旋转,直至其主方向与水平方向垂直,并利用HOG算法分别提取这些特征块的HOG特征;然后将每个旋转后的SIFT特征块进行水平翻转,并利用HOG算法分别提取这些水平翻转后的特征块的HOG特征;将旋转后以及水平翻转后得到的每幅乳腺图像的图像号、该图像的HOG特征数以及该图像的HOG特征对应保存到图像特征库;步骤2:建立分层聚类树;具体步骤如下 ...
【技术特征摘要】
1.一种基于相似度的乳腺图像的匹配图像检索方法,其特征在于,具体包括如下步骤:步骤1:建立图像特征库;具体步骤为:遍历图像库中保存的乳腺图像,利用SIFT算法对每幅乳腺图像提取SIFT特征块,并将每个符合规定尺度的SIFT特征块以特征块中心为定点旋转,直至其主方向与水平方向垂直,并利用HOG算法分别提取这些特征块的HOG特征;然后将每个旋转后的SIFT特征块进行水平翻转,并利用HOG算法分别提取这些水平翻转后的特征块的HOG特征;将旋转后以及水平翻转后得到的每幅乳腺图像的图像号、该图像的HOG特征数以及该图像的HOG特征对应保存到图像特征库;步骤2:建立分层聚类树;具体步骤如下:步骤201:从图像特征库中读取所有的HOG特征并将它们保存到分层聚类树的根节点;令根节点为当前节点;步骤202:在当前节点上保存所有的HOG特征中随机选取来自于不同图像的K个HOG特征作为初始聚类中心,使用K-Means算法将当前节点上保存的所有HOG特征分成K个类;同时,令当前节点产生K个子节点,将生成的K个类中的HOG特征以及每个类的聚类中心对应存储到当前节点的K个子节点上;步骤203:判断分层聚类树的层数是否小于阈值depth,是则将步骤202产生的K个子节点依次作为当前节点,分别执行步骤202;否则结束;步骤3:提取待检索图像的特征;具体步骤如下:对一幅待检索图像,利用SIFT算法提取其SIFT特征块并选出符合规定尺度的SIFT特征块,将每个选出的SIFT特征块以特征块的中心为定点旋转,直至其主方向与水平方向垂直,并提取其HOG特征;再对该旋转后的SIFT特征块做水平翻转后提取HOG特征;步骤4:查找与待检索图像相似的图像并输出;具体步骤如下:步骤401:遍历待检索图像的所有HOG特征,将待检索图像的每个HOG特征作为当前特征,选出分层聚类树上与当前特征对应的一个叶子节点;步骤402:对于待检测图像的每个HOG特征,利用kNN算法计算得到与每个HOG特征对应的叶子节点中存储的HOG特征中与该HOG特征最近的k个特征,该k个HOG特征组成该HOG特征的匹配特征集;步骤403:统计待检测图像的所有HOG特征的匹配特征集中,所有HOG特征来自的乳腺图像的图像号出现的次数,并将每个乳腺图像的图像号出现的次数按照降序排序,取前k个对应的乳腺图像作为与待检测图像相似度高的乳腺图像输出。2.如权利要求1所述的基于相似度的乳腺图像的匹配图像检索方法,其特征在于,所述步骤1中的所述符合规定尺度的SIFT特征块是指大小不小于32×32像素的SIFT特征块。3.如权利要求1所述的基于相似度的乳腺图像的匹配图像检索方法,其特征在于,所述步骤202中的当前节点产生子节点的个数K=3。4.如权利要求1所述的基于相似度的乳腺图像的匹配图像检索方法,其特征在于,所述步骤203中的分层聚类树的层数的阈值depth=4。5.如权利要求1所述的基于相似度的乳腺图像的匹配图像检索方法,其特征在于,所述步骤401中选出分层聚类树上与当前特征对应的一个叶子节点的具体步骤如下:1)将分层聚类树的根节点作为当前节点;2)计算当前HOG特征与当前节点的K个子节点聚类中心的欧式距离,选出距离最近的节点;判断该选出的节点是否是叶子节点,是则结束;否则将该选出的节点作为当前节点,执行2)。6.一种基于相似度的乳...
【专利技术属性】
技术研发人员:张浪,辛良,申田,李云峰,张孝林,
申请(专利权)人:西安华海盈泰医疗信息技术有限公司,
类型:发明
国别省市:陕西;61
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。