一种数字预失真参数的求取方法及预失真系统技术方案

技术编号:9826774 阅读:109 留言:0更新日期:2014-04-01 16:09
本发明专利技术公开了一种预失真参数的求取方法及预失真系统,涉及数字预失真处理领域,用以在达到良好信号处理效果的同时,简化模型的计算复杂度。该方法包括:在周期性滤波处理开始后,获取经过预失真处理后的预失真信号和经过功放处理后的第一反馈信号;对所述第一反馈信号进行消除额定线性增益得到第二反馈信号;根据所述第二反馈信号形成的矩阵及根据所述预失真信号形成的矩阵确定预失真参数;根据确定的预失真参数更新预失真参数索引表。

【技术实现步骤摘要】
一种数字预失真参数的求取方法及预失真系统
本专利技术涉及数字预失真处理领域,具体涉及一种数字预失真参数的求取方法及预失真系统。
技术介绍
随着现代通信技术的发展,功率放大器的各种非线性特性越来越受到关注,行为模型也成为微波电路领域研究的热点。相比较传统的晶体管级的电路模型,行为模型极大地简化了模型的分析和计算,并保持了足够的非线性电路分析的精度,使其特别适用于宽带数字信号系统的性能分析;因此,在大规模集成电路和预失真技术研究中具有很好的应用前景。对于宽带通信系统而言,由于必须考虑功率放大器记忆效应,因此传统的非线性模型不再适用。目前通常采用带记忆的多项式或者人工神经网络等模型来描述功率放大器的动态特性。相比较基于人工神经网络的行为模型,Volterra级数模型(modifiedvolterraseries)可以更清晰地描述非线性系统的物理意义,但它的模型参数数目随着系统非线性及记忆长度的增加呈指数形式增加,只适用于弱非线性系统的研究,否则,将会引起计算收敛性问题。超宽带信号的功放产生的记忆效应非常的严重,功放记忆效应产生的原因是功放对各个频率点的信号响应不一致,其表现的形式为功放输出信号不但与当前点信号有关,而且与功放前面的时刻点有关,显然,随着信号带宽的增加,功放的记忆深度也显著加深。做为模拟器件的功放本身是一个非线性系统,存在AM-AM(幅度-幅度)和AM-PM(幅度-相位)的非线性失真,AM-AM失真是指输出信号和输入信号幅度上的失真,比如当输入信号摆幅进入阈值电压之下或者饱和电压之上时,输出电压信号就会发生截断或削顶,即为AM-AM失真。AM-PM失真是指,非线性功放输入信号幅度上的变化,导致了输出和输入信号之间的相位差的变化。当窄带信号输入时,记忆效应的影响相对较小,通过校正功放的AM-AM和AM-PM失真就可以达到较好的效果。随着信号的带宽增加,尤其是下一代移动通信中100M这样的超宽带信号,功放的记忆效应非常严重,使得功放变成一个非常复杂的线性与非线性失真相互糅合的系统,对于这样一个系统其理论上的完备表达式是一个Volterra级数模型。显然Volterra级数模型目前来看是不可实现的,需要对其进行简化和优化处理,如何提取功放的主要失真模型,并建立一个有效的、可实现的、开销小的功放预失真模型是一项非常具有挑战意义的工作。为解决该问题,近年来通常采用一些简化的模型建立放大器的行为模型,其中最常用的是Wiener维纳模型和Hammerstein哈默斯坦模型,这两种模型极大地降低了模型的复杂度,并且能够应用于强非线性系统,因此,在功率放大器非线性行为模型研究中得到广泛的应用。但该两种模型并不能完全地描述功率放大器的非线性特性,尤其是很难精确地表示功率放大器的包络记忆效应;此外,Wiener模型和Hammerstein模型对于模型参数求解来说,均不是线性方程,对模型的参数提取困难。MP(memorypolynomial)是另一种常用的行为模型,它可以看作是一种扩展的Hammerstein模型,但有时也不能得到符合要求的模型精度。因此,建立精度更高的参数线性的行为模型受到关注。
技术实现思路
本专利技术提供了一种预失真参数的求取方法及预失真系统,用以在达到良好信号处理效果的同时,简化模型的计算复杂度。本专利技术提供的一种数字预失真参数的求取方法,该方法包括:在周期性滤波处理开始后,获取经过预失真处理后的预失真信号和经过功放处理后的第一反馈信号,所述预失真信号根据如下预失真模型获得:其中,z(n)表示n时刻输出的经过预失真处理后的信号,x(n)表示n时刻输入的原始信号,n表示原始信号的输入时刻,m表示原始信号的记忆时刻,w表示预失真参数,M表示记忆深度,Q表示非线性阶数,L表示最大交叉采样点,q表示非线性阶数索引,*表示信号的共轭,l表示交叉采样点,x(n-m)表示原始信号,x*(n-m)表示原始信号的共轭信号;对所述第一反馈信号进行消除额定线性增益得到第二反馈信号;根据所述第二反馈信号形成的矩阵及根据所述预失真信号形成的矩阵确定预失真参数;根据确定的预失真参数更新预失真参数索引表。在本专利技术上述技术方案中,提出了一种新型的数字预失真处理模型,以在保证信号处理性能的前提下,简化运算复杂程度。优选地,根据原始信号与原始信号的共轭信号二者之间信号向量关系,采用原始信号替代所述预失真模型中的原始信号的共轭信号,替代后的所述预失真模型为:其中,exp(-j2θm1+j2θm2)表示原始信号与原始信号的共轭信号之间的向量关系,θ表示原始信号的复角。通过上述公式推导可知,本专利技术上述技术方案通过简化预失真模型中的时间共轭交错模型,而使整体预失真模型的计算复杂度下降,节省了乘法器资源。而且,在获取信号幅值(即第一反馈信号)时可以采用现有算法,均可以在获取信号幅值的同时获取信号的复角,所以本专利技术实施例对模型的简化过程是根据现有资源实现的,无需额外增加资源,实现简单方便。更佳地,根据所述预失真参数索引表中预失真参数与原始的信号幅值之间的对应关系,将所述替代后的所述预失真模型进一步变化为:...
一种数字预失真参数的求取方法及预失真系统

【技术保护点】
一种数字预失真参数的求取方法,其特征在于,该方法包括:在周期性滤波处理开始后,获取经过预失真处理后的预失真信号和经过功放处理后的第一反馈信号,所述预失真信号根据如下预失真模型获得: z ( n ) = Σ m = 0 M - 1 x ( n - m ) Σ q = 1 Q w m , q | x ( n - m ) | ( q - 1 ) + Σ l = 1 L c Σ m = 0 M - 1 x ( n - m ) Σ q = 1 Q w m , q , - l | x ( n - m ...

【技术特征摘要】
1.一种数字预失真参数的求取方法,其特征在于,该方法包括:在周期性滤波处理开始后,获取经过预失真处理后的预失真信号和经过功放处理后的第一反馈信号,所述预失真信号根据如下预失真模型获得:其中,z(n)表示n时刻输出的经过预失真处理后的信号,x(n)表示n时刻输入的原始信号,n表示原始信号的输入时刻,m表示原始信号的记忆时刻,w表示预失真参数,M表示记忆深度,Q表示非线性阶数,L表示最大交叉采样点,q表示非线性阶数索引,*表示信号的共轭,l表示交叉采样点,x(n-m)表示原始信号,x*(n-m)表示原始信号的共轭信号;对所述第一反馈信号进行消除额定线性增益得到第二反馈信号;将所述第二反馈信号形成的矩阵及根据所述预失真信号形成的矩阵带入到公式确定预失真参数的最小二乘解,其中,表示预失真参数的最小二乘解,z表示预失真信号形成的矩阵,U表示第二反馈信号形成的矩阵,UH表示矩阵的U的共轭矩阵;根据所述预失真参数的最小二乘解确定预失真参数;根据确定的预失真参数更新预失真参数索引表。2.如权利要求1所述的方法,其特征在于,根据原始信号与原始信号的共轭信号二者之间信号向量关系,采用原始信号替代所述预失真模型中的原始信号的共轭信号,替代后的所述预失真模型为:其中,exp(-j2θm1+j2θm2)表示原始信号与原始信号的共轭信号之间的向量关系,θ表示原始信号的复角。3.如权利要求2所述的方法,其特征在于,根据所述预失真参数索引表中预失真参数与原始的信号幅值之间的对应关系,将所述替代后的所述预失真模型进一步变化为:其中,LUT表示预失真参数索引表,LUTm(|x(n-m)|)表示原始信号的信号幅值|x(n-m)|在LUT表中所对应的预失真参数。4.如权利要求3所述的方法,其特征在于,对所述第一反馈信号进行消除额定线性增益得到第二反馈信号,具体包括:消除所述第一反馈信号的额定线性增益;消除所述第一反馈信号的共轭信号的额定线性增益;经过消除额定线性增益的第一反馈信号和第一反馈信号的共轭信号组成所述第二反馈信号。5.如权利要求4所述的方法,其特征在于,通过下列公式消除所述第一反馈信号的额定线性增益:其中,y表示第一反馈信号,u表示消除功放额定线性增益的第一反馈信号,G表示额定线性增益,n表示第一反馈信号的输入时刻,m表示第一反馈信号的记忆时刻,M表示记忆深度,Q表示非线性阶数,L表示最大交叉采样点,q表示非线性阶数索引,l表示交叉采样点;通过下列公式消除所述第一反馈信号的共轭信号的额定线性增益:其中,y*表示第一反馈信号的共轭信号,u*表示消除功放额定线性增益后的第一反馈信号的共轭信号,G表示额定线性增益,n表示第一反馈信号的输入时刻,m表示第一反馈信号的记忆时刻,M表示记忆深度,Q表示非线性阶数,L表示最大交叉采样点,q表示非线性阶数索引,l表示交叉采样点。6.一种数字预失真处理系统,其特征在于,该系统包括:预失真器,用于在周期性滤波处理开始后,对输入的原始...

【专利技术属性】
技术研发人员:熊军王新民段滔王静怡
申请(专利权)人:大唐移动通信设备有限公司
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1