【技术实现步骤摘要】
本专利技术涉及社交网络领域,具体地说,涉及的是一种社交网络平台上话题关键词自适应扩充的方法及系统。
技术介绍
在Web2.0时代,社交网络日益成为人们网络生活的重要组成部分。社交网络是一个基于用户关系的信息分享、传播以及获取平台,用户可以通过WEB、WAP以及各种客户端组件个人社区,以140字左右的文字更新信息,并实现即时分享。从国外的twitter到国内的新浪,对用户的技术门槛都很低,同时社交网络api的存在使得用户可以在各种移动终端上登录社交网络发布消息,这也加速了社交网络的发展。基于关键词的信息搜索是目前用户查找网络信息的重要手段。但是因为语言的多样性,不同的人对相同的事物有不同的描述,为了避免因为描述不准确或不完整而造成的信息查询不准确,关键词扩充方法是搜索引擎解决这个问题的关键手段。现有的网页关键词扩充方法主要是收集搜索引擎中大量用户的关键词查询使用记录,根据这些关键词共同出现的频率高低来组合扩充。由于网页信息内容繁杂稀疏,因此现有的这些方法只使用了搜索词汇的关系,而没有根据搜索结果的内容之间的相关性来扩充关键词,仍然无法实现话题挖掘和个性化的用户搜索。随着社交网络的快速发展,社交网络信息搜索成为信息获取的新来源。与网页信息内容多讨论话题比较分散相比,社交网络信息内容简短,谈论话题比较专一,在同一话题中出现的词汇的相关性高。通过分析社交网络信息内容中词之间的相关性,不仅可以提取到相关话题的关键词,而且可以提取到跟该话题高度相关的隐含话题的关键词,比如通过汽车相关的关键词,不仅可以找到汽车品牌和汽车厂商等显性相关话题,而且还可以找到保险、修理等隐 ...
【技术保护点】
一种社交网络平台上话题关键词自适应扩充的方法,其特征在于包括以下步骤:步骤1:基于半监督的话题语料库和话题种子词库的建立;a.人工标注少量话题相关的正负样本,建立语料库,并且标注少量话题关键词建立种子词库集合KW;b.语料库半自动增加:利用种子词在社交网络上搜索相关的话题信息,对搜索到的信息进行TF?IDF话题相关性匹配,匹配结果按相关性数值从高到低排列,结果再由人工判断是否跟话题相关,根据人工判断结果将信息加入到正负样本库中,扩充样本库;步骤2:对语料库中正样本信息进行分词,得到不包含种子词的分词词汇集合W;步骤3:确定集合KW和W中种子词词频和分词词汇的出现频率和词频,选取大于最小的种子词出现频率t1或大于最小的种子词词频t2的分词词汇构成集合G1;步骤4:确定初选集合G1中每个词gi与每个种子词Kj在正样本信息中的相关性,选取相关性大于阈值t3的词汇构成集合G2;步骤5:判决集合G2中词汇的影响力,选取影响力大于阈值t4的词汇构成新集合G3;步骤6:对集合G3中的单字运用排列组合合并成可能的词加入到集合G3并去除单字;步骤7:将步骤6得到的集合G3中的所有词加入到关键词扩充库中。
【技术特征摘要】
1.种社交网络平台上话题关键词自适应扩充的方法,其特征在于包括以下步骤: 步骤1:基于半监督的话题语料库和话题种子词库的建立; a.人工标注少量话题相关的正负样本,建立语料库,并且标注少量话题关键词建立种子词库集合KW ; b.语料库半自动增加:利用种子词在社交网络上搜索相关的话题信息,对搜索到的信息进行TF-1DF话题相关性匹配,匹配结果按相关性数值从高到低排列,结果再由人工判断是否跟话题相关,根据人工判断结果将信息加入到正负样本库中,扩充样本库; 步骤2:对语料库中正样本信息进行分词,得到不包含种子词的分词词汇集合W ; 步骤3:确定集合KW和W中种子词词频和分词词汇的出现频率和词频,选取大于最小的种子词出现频率tl或大于最小的种子词词频t2的分词词汇构成集合Gl ; 步骤4:确定初选集合Gl中每个词gi与每个种子词Kj在正样本信息中的相关性,选取相关性大于阈值t3的词汇构成集合G2 ; 步骤5:判决集合G2中词汇的影响力,选取影响力大于阈值t4的词汇构成新集合G3 ; 步骤6:对集合G3中的单字运用排列组合合并成可能的词加入到集合G3并去除单字; 步骤7:将步骤6得到的集合G3中的所有词加入到关键词扩充库中。2.根据权利要求1所述的社交网络平台上话题关键词自适应扩充的方法,其特征在于步骤I中:所述的正负样本,其中正样本是跟话题相关的,负样本是跟话题不相关的;在微博社交平台,一个样本是指整条微博,而在博客或论坛,是指一个段落;所述的标注少量关键词建立种子词库,少量关键词指不少于5个话题关键词,种子词库集合为KW: IK1,…,Ki,…,KJ,M为种子词的个数。3.根据权利要求1所述的社交网络平台上话题关键词自适应扩充的方法,其特征在于步骤2中,对正样本信息进行分词,是指采用常用分词软件对信息文字进行去形容词、虚词操作,具体实现如下:假设语料库现有正样本信息N条,表示为{Y1;Y2,…,ΥΝ},分词后得到所有词汇集合Wiw1, W2,...wi,..},其中Wi古Wj当i古j,且集合W不包括集合KW中的任意元素。4.根据权利要求1所述的社交网络平台上话题关键词自适应扩充的方法,其特征在于步骤3中,具体过程如下: 1)统计非种子词汇Wi与种子词Kj在正样本中的出...
【专利技术属性】
技术研发人员:周异,叶辉,徐勇,周曲,陈凯,
申请(专利权)人:上海交通大学,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。