本发明专利技术涉及X射线管用的旋转阳极,该旋转阳极具有陶瓷基体,所述陶瓷基体携带有在电子照射期间发射X射线的聚焦通路,其中所述基体由碳化硅和至少一种耐高温二硼化物的混合物制成。
【技术实现步骤摘要】
旋转阳极和用于制造旋转阳极用的基体的方法
本专利技术涉及X射线管用的旋转阳极以及用于制造这样的旋转阳极用的基体的方法。
技术介绍
X射线管,如在例如医学X射线设备中使用的X射线管,包括阴极,从该阴极电子朝向旋转阳极加速。旋转阳极包括基体,该基体携带有所谓的由钨或钨-铼合金制备的聚焦通路(focalpath,Brennbahn),其形成实际的阳极。当充分加速的电子轰击聚焦通路时,聚焦通路的原子因此被激发从而模仿所需波长的X射线。通过旋转阳极的旋转,在此保持热负荷(thermischeBelastung)尽可能地小。由于期望辐射强度越来越大,特别是针对X射线断层照相术而言,电子的焦斑(Brennfleck)应该尽可能尖锐地聚焦在聚焦通路上并且尽可能地小,这导致焦斑区域的能量密度高以及由此引起温度特别高。为了进行补偿,需要旋转阳极具有特别高的转数。已知的旋转阳极包括由钛-锆-钼合金制备的基体,所述合金具有相对高的密度以及具有相对小的高温强度。基于该基体的机械性能,目前的旋转阳极仅可以实现200Hz至250Hz的旋转频率。除了这种钛-锆-钼基体之外,还已知有陶瓷材料基体。例如US20100027754记载了阳极环形式的基体用于以旋转阳极,其由石墨或碳化硅制成。阳极环还包括径向取向的方形腔室,可将热解碳的小片段插入其中以尽可能快地导出和储存所产生的热量。还已知钼-钛-锆合金和碳化硅的组合。但是,通过这些类型的材料不能实现现代X射线设备中所需的高旋转频率。因此,本专利技术的目的在于给出旋转阳极,所述旋转阳极特别为耐热的以及允许300Hz至400Hz范围的旋转频率。本专利技术的目的还在于给出用于制造这种类型的旋转阳极用的基体的方法。所述目的通过根据本专利技术的旋转阳极以及根据本专利技术的方法而实现。这种类型的X射线管用的旋转阳极包括陶瓷基体,该陶瓷基体携带有在电子照射期间发射X射线的聚焦通路。为此本专利技术提供了由碳化硅和至少一种耐高温二硼化物的混合物制成的基体。在此特别有利地使用二硼化钛、二硼化钽、二硼化锆以及二硼化铪。所述二硼化物属于超高温材料的材料类别以及具有大于3000℃的熔点。这种类型的基体因此可以抵抗在旋转阳极运行期间特别高的热应力。同时,这种类型的混合碳化硅-二硼化物陶瓷具有非常高的热容量,从而基体可以在旋转阳极的运行期间吸收大量能量。另外,即使在高温范围内,这种类别的材料也保持高热导性,从而可以在运行期间很好地分布热量以及不会发生变形。同时,这样的混合陶瓷具有的热膨胀系数在钨的热膨胀系数的范围内,因此在基体和聚焦通路之间不会形成应力。另一优势在于基于二硼化物的陶瓷的强度的温度依赖性。在1000℃至1500℃的温度范围(该温度范围与这种旋转阳极的运行特别相关)中,这些陶瓷的强度甚至随着温度的增加而增加。常见的基于二硼化物的陶瓷在这个温度范围内可以实现450Mpa至550Mpa的强度值。与此形成对比,根据现有技术的钼-钛-锆合金在该温度范围内具有减小的强度,因此在高转数条件下由这种类型的已知材料制备的基体会发生机械故障。这通过本专利技术的基于二硼化物的陶瓷得以避免,从而可以在聚焦通路上的电子照射的焦斑中实现特别高的转数和由此特别高的能量密度。至少一种二硼化物的含量有利地为基体总体积的1至50体积%,可以根据所需的热膨胀系数改变二硼化物含量以匹配聚焦通路材料。本专利技术还涉及用于制造X射线管的旋转阳极用的基体的方法,在该方法中将耐高温陶瓷粉末压制入负模(Negativform)中并接着进行烧结。根据本专利技术,使用的是包含碳化硅和至少一种耐高温二硼化物的混合物的陶瓷粉末。如已经借助于本专利技术旋转阳极所说明的,在此有利地特别使用二硼化钛、二硼化钽、二硼化锆或二硼化铪。二硼化物可以单独使用或以混合物形式使用。在此体积含量有利地为1至50体积%。这种类型的基于二硼化物的混合陶瓷的优势已经在本专利技术旋转阳极的讨论中进行了说明,因此在这里不再重复。在2000℃至2300℃的无压烧结(pressurelesssintering)、在2000℃至2300℃的火花等离子体烧结(sparkplasmasintering)或在1700℃至2300℃的热等静压(hotisostaticpressing)特别适用于这种类型的烧结陶瓷。特别稳定的陶瓷基体可以通过所有所述方法再现和可靠地进行制造。在下文中借助示例性实施方式更详细地对本专利技术进行说明。为了产生同时具有特别高的耐热性和高机械强度的X射线管用的旋转阳极,并且其能够经受最高达400Hz的旋转频率,由碳化硅和耐高温二硼化物制备的混合陶瓷是特别合适的。以下示例性实施方式将共同地对本专利技术进行说明:1.碳化硅,其具有1至50体积%的二硼化钛2.碳化硅,其具有1至50体积%的二硼化铪3.碳化硅,其具有1至50体积%的二硼化锆4.碳化硅,其具有1至50体积%的二硼化钽5.碳化硅,其具有二硼化钛、二硼化铪和二硼化锆的混合物,总体积含量为1~50体积%。在混合陶瓷中的二硼化物的热膨胀系数大于碳化硅的热膨胀系数,后者在1000℃为4.5·10-6K-1。通过将二硼化物添加至碳化硅,从而存在提高混合陶瓷的热膨胀系数和匹配相应条件的可能性。所述二硼化物也具有高的热容量CP(1500℃),为大于0.85J/(gK),这在旋转阳极的运行期间是有利的,因为每个X射线循环需要吸收大量能量。此外,这种类别的材料的特征之一是,即使在高温的范围也具有高热导性。很多材料在温度增加时显示热导性的明显减小,而二硼化物在500℃至2000℃的温度范围具有几乎恒定的热导性行为,其中它们的热导性λ大于75W/mK。在二硼化钛的情况中甚至可以观察到热导性的明显增加。这对X射线运行中的旋转阳极的热量散逸具有积极影响。当选择碳化硅和具体的二硼化物之间的混合比例时,首先期望使旋转阳极的陶瓷基体的热膨胀系数匹配聚焦通路的热膨胀系数,通常聚焦通路由钨和5%或10%合金化的铼制成。有利的是实现5.2~6·10-6K-1的热膨胀系数(Ausdehnungskoeffizient)。通过匹配热膨胀系数以避免加热期间在陶瓷基体材料和聚焦通路材料之间形成应力。所述应力最终会导致聚焦通路的剥落。也可以选择混合比例,使得比热容CP足够大以吸收X射线循环期间引入旋转阳极中的能量。在此通常可以实现的数值为约1.1J/(gK),尽管这未达到石墨或热解石墨的热容量(CP>1.9J/(gK)),但比钛-锆-钼合金的比热容(通常为约0.25J/(gK))大得多。所述陶瓷的另一优势在于比常见材料(钼-钛-锆或热解石墨)得到的显著改善的热导性。与这些材料形成对照,这样的混合陶瓷的热导性即使在1000℃至1500℃的温度范围也保持恒定,碳化硅基体约为60W/mK,或嵌入的二硼化物为75W至80W/mK。这确保了在X射线运行期间热量的稳定输出以及抑制了热量的生成。所述陶瓷的机械强度比常规材料也得以显著改善。在常规旋转阳极上的测试显示,由于钼-钛-锆材料的密度高且在1000℃至1500℃的温度范围在大于250Hz的旋转频率下强度损失大,旋转阳极会发生灾难性故障。机械计算证实了这种故障形成。在另一方面,由碳化硅和添加的二硼化物制成的旋转阳极在增高的温度下显示恒定或甚至增加的强度值。在10本文档来自技高网...
【技术保护点】
X射线管用的旋转阳极,其具有陶瓷基体,该陶瓷基体携带有在电子照射期间发射X射线的聚焦通路,其特征在于,所述基体由碳化硅和至少一种耐高温二硼化物的混合物制成。
【技术特征摘要】
2011.09.20 DE 102011083064.21.X射线管用的旋转阳极,其具有陶瓷基体,该陶瓷基体携带有在电子照射期间发射X射线的聚焦通路,其特征在于,所述基体由碳化硅和至少一种耐高温二硼化物的混合物制成,其中所述旋转阳极的旋转频率在300Hz至400Hz范围内,并且其中选择碳化硅和二硼化物之间的混合比例,使得所述旋转阳极的陶瓷基体的热膨胀系数匹配聚焦通路的热膨胀系数。2.根据权利要求1的旋转阳极,其特征在于,所述至少一种二硼化物选自包括下列的组:TiB2、TaB2、ZrB2和HfB2。3.根据权利要求1或2的旋转阳极,其特征在于,所述至少一种二硼化物的含量为所述基体总体积的1~50体积%。4.用于制造X射线管的...
【专利技术属性】
技术研发人员:J弗罗伊登伯格,S兰朋舍夫,GK帕姆,S沃尔特,
申请(专利权)人:西门子公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。