大功率铝-空气电池系统技术方案

技术编号:8535426 阅读:258 留言:0更新日期:2013-04-04 19:49
一种大功率铝-空气电池系统,该系统至少由两个单体铝-空气电池(34)彼此以电串联或者电并联连接成电池组(3);电池组(3)的下方设有两个液流配置室(1、2),在电池组(3)的上方是配液器(9);各单体铝-空气电池(34)经各自的出液管(348)与液流配置室(1、2)相通;液流配置室(1、2)经其各自的输液管(11、21)与泵液腔(5)相通;泵液腔(5)通过汲液管(71)与液流泵(7)相通,液流泵(7)的送液管(72)与配液器(9)相通;配液器(9)通过各进液管(91)同位于其下方的各单体铝-空气电池(34)相通。本发明专利技术的有益效果是:适用于高比能量、大功率的铝-空气电池系统,具有安全可靠、成本低、对环境无污染的特点。

【技术实现步骤摘要】

本专利技术涉及直接将化学能转化为电能的装置,尤其涉及以水溶液为电解质的金属燃料电池,特别是涉及用铝-空气电池输出大功率电能的装置。技术背景铝-空气电池是一种新型高能化学电源,它以铝合金为负极,空气电极为正极、中性或碱性水溶液为电解液,电池运行过程中通过消耗铝合金负极和空气中的氧气对外输出电能。铝-空气电池不需充电,电池运行过程中可通过补充消耗的铝合金负极材料以维持电池持续运行,故也称为金属燃料电池。中性铝-空气电池以食盐水或海水为电解液,碱性铝-空气电池以氢氧化钠或氢氧化钾水溶液为电解液。在先中国专利91109160. 2名为“中性铝-空气电池及其制备方法”公开了一种采用两单体电池构成的电池组,这种电池组结构采用密封工艺制成,电池组使用过程产生的反应沉积物无法及时清除。在先中国专利99251233. 5名为“铝空气电池”公开了一种铝空电池的结构,该结构采用整体组合式栅栏阳极,方便更换,同时组合式栅栏阳极可以移离电解液液面,以避免自行放电耗损阳极,并采用循环流动的电解液可以冲刷铝板表面,避免反应沉积物遮蔽铝板。但这种电池在工作时,因只有一个电池室,故电池电压低,且反应沉积物随电解液在电池内部流动,不易清除
技术实现思路
本专利技术要解决的技术问题在于避免上述现有技术的不足之处而提出一种大功率铝-空气电池系统及其液 流方式,解决现有技术铝-空电池沉淀物难以清除、电池组中单体电池间液流短路以及液流温度控制等问题。本专利技术为解决上述技术问题而提出的技术方案是,一种大功率铝-空气电池系统,包括单体铝-空气电池,而所述铝-空气电池至少是由两个、彼此以电串联或者电并联连接成电池组;该电池组的下方设有两个液流配置室,在该电池组的上方是配液器;所述各单体铝-空气电池经各自的出液管与所述液流配置室相通;该液流配置室经其各自的输液管与泵液腔相通;所述泵液腔通过汲液管与液流泵相通,该液流泵的送液管与所述配液器相通;该配液器通过各进液管同位于其下方的各单体铝-空气电池相通;铝-空气电池系统运行时,分别调节与所述液流配置室相连接的所述出液管的出液管开关,控制所述电池组的电解液交替流入所述两液流配置室之一,电解液在该液流配置室、泵液腔、配液器和电池组之间循环,而另一液流配置室则处于电解液静置、沉淀物沉降处理过程中;位于该电池组外侧的电能输出端分别与所述电池组的空气电极集流板和铝合金电极集流板相连通, 并对外供电。所述各液流配置室是完全对称的结构;所述各液流配置室分别设置有用于对电解液进行加热或冷却的加热/冷却管;所述各液流配置室的下部分别设置带有开关的沉淀物排出管,在所述各液流配置室壳体底部、设有令沉淀物滑向所述沉淀物排出管一侧的倾斜式结构。所述泵液腔上设置有带有开关的泵液腔清洗液进液管和泵液腔清洗液出液管,用于对所述装置内部的清洗。所述配液器包括配液槽、与该配液槽相适配的上盖和位于该配液槽壳体外侧的、用于显示该配液槽内液面状态的液面显示器;所述配液槽是中部有上下可通透中空窗、四周为槽渠的槽形结构;与所述各单体电池连通的各进液管位于该槽渠底部;所述液流泵的送液管与槽渠连通;所述上盖下表面有与所述配液槽的中空窗相适配的“ 口 ”字形的凸楞, 当该上盖盖在所述配液槽上时,该凸楞恰好套住或嵌入所述配液槽的中空窗,构成氢气传输通道;位于该配液器外部的电压电流调节器、电流电压显示器和电能输出端通过位于配液槽内的导电连接分别与该配液槽底部所述电池组的铝合金电极集流板和空气电极集流板相连;所述各单体电池产生的氢气经由配液槽中空窗和上盖的凸榜构成的氢气传输通道,从设置在所述上盖上的出气口向外排出。所述单体电池具有腔体结构,包括彼此分隔的进液分割室、电池反应室和出液分割室;所述配液器内的电解液经进液管流至进液分割室,再经该分割室下部的进液管流入电池反应室;在该进液分割室上方、进液管电解液流入处,装有可转动、栅格结构的进液切割器,流进该分割室的电解液恰好注入转动的进液切割器栅格上,被该进液切割器的栅格斩断后流入;所述电池反应室至少有一侧壁为空气电极,与位于所述电池反应室内的铝合金电极构成电极组;所述铝合金电极位于该电池反应室内,并固定于定位槽中;所述铝合金电极和空气电极分别与该电池组的铝合金电极集流板和空气电极集流板电联接,所产生的氢气通过该电池反应室上部的敞开口进入所述配液器的氢气传输通道向外排出;所述电池反应室与出液分割室由一内隔壁相隔,在该内隔壁上端留有溢流槽令两者相通;该出液分割室被一横隔分隔为上下两区汇流区和出液区,横隔上设有向下导通的汇流管;所述电池反应室内的电解液经溢流槽流入所述汇流区,经汇流管流入其下部的出液区;所述出液区的下部有所述出液管与所述两个液流配 置室相通;在所述出液区内、汇流管管口的下方,装有可转动、栅格结构的出液切割器,由汇流管流出的电解液恰好注入该出液切割器的栅格上,即该电解液是被该出液切割器的栅格斩断后才流进该出液区。所述电池反应室的下部也可以是具有上大下小、有η个侧面的棱柱形空腔,该棱柱形空腔的侧面和底面均嵌装有空气电极;所述电池反应室内嵌插有η个棱柱形的铝合金电极,这η个棱柱形的铝合金电极与电池反应室下部各侧壁的η个空气电极一一对应,形成多组电极组;所述的η个棱柱形铝合金电极面向与之对应的空气电极一侧,其下部具有与该空气电极平行的斜面结构。所述进液切割器和出液切割器是自带转轴的、可在电解液冲击下自行转动来斩断流过的电解液液流;或者是采用电路控制开合结构,用来斩断流过的电解液液流。在所述各液流配置室的出液管的端口处设有液流档板,该液流档板由数根连接柱与出液管相连,各连接柱彼此存有间隔,所述出液管内的电解液从各连接柱之间的间隔流出。所述电池反应室内的铝合金电极和空气电极是一组或多组;多组时,各铝合金电极和空气电极分别串联或并联,再分别电联接至所述铝合金电极集流板和空气电极集流板。所述进液分割室和电池反应室之间的进液管上连接有清洗液出液管,该清洗液出液管上装有清洗液出液开关。所述出液分割室的出液管上还连接有清洗液出液管,该清洗液出液管上装有清洗液出液管开关。本专利技术为解决上述技术问题又提出的技术方案是,提供一种大功率铝-空气电池系统的液流方式,所述大功率铝-空气电池系统至少是由两个单体铝-空气电池彼此电串联或者电并联连接成电池组;该电池组的下方设有两个液流配置室,在该电池组的上方是配液器;所述各单体铝-空电池经各自的出液管与所述液流配置室相通;该液流配置室经其各自的输液管与泵液腔相通;所述泵液腔通过汲液管与液流泵相通,该液流泵的送液管与所述配液器相通;该配液器通过各进液管同位于其下方的各单体铝-空电池相通;位于该电池组外侧的电能输出端分别与所述电池组的空气电极集流板和铝合金电极集流板相连通,并对外供电;所述大功率铝-空气电池系统的液流方式是注入所述液流配置室内的电解液经输液管流入泵液腔;所述液流泵通过汲液管汲取泵液腔内的电解液,经送液管泵入所述配液器内;所述配液器内的电解液经各出液管流入单体电池,电解液经各单体电池的出液管流向所述两液流配置室之一,电解液在该液流配置室、泵液腔、配液器和各单体电池之间循环,而另一液流配置室则处于电解液静置、沉淀物沉降处理过程中,如此循环往复。前述的“沉淀物沉降处理过程”包括通过所述各本文档来自技高网...

【技术保护点】
一种大功率铝?空气电池系统,包括单体铝?空气电池(34),其特征在于:所述单体铝?空气电池(34)至少是两个、彼此电串联或者电并联连接成电池组(3);该电池组(3)的下方设有两个液流配置室(1、2),在该电池组(3)的上方是配液器(9);所述各单体铝?空电池(34)经各自的出液管(348)与所述液流配置室(1、2)相通;该液流配置室(1、2)经其各自的输液管(11、21)与泵液腔(5)相通;所述泵液腔(5)通过汲液管(71)与液流泵(7)相通,该液流泵(7)的送液管(72)与所述配液器(9)相通;该配液器(9)通过各进液管(91)同位于其下方的各单体铝?空电池(34)相通;?铝?空气电池系统运行时,分别调节与所述液流配置室(1、2)相连接的所述出液管(348)的出液管开关,控制所述电池组(3)的电解液交替流入所述两液流配置室(1,2)之一,电解液在该液流配置室(1或2)、泵液腔(5)、配液器(9)和电池组(3)之间循环,而另一液流配置室(2或1)则于处于电解液静置、沉淀物沉降及排出处理过程中;位于该电池组(3)外侧的电能输出端(40+,40?)分别与所述电池组(3)的空气电极集流板(32)和铝合金电极集流板(31)相连通,并对外供电。...

【技术特征摘要】
1.一种大功率铝-空气电池系统,包括单体铝-空气电池(34),其特征在于 所述单体铝-空气电池(34)至少是两个、彼此电串联或者电并联连接成电池组(3);该电池组(3)的下方设有两个液流配置室(1、2),在该电池组(3)的上方是配液器(9); 所述各单体铝-空电池(34 )经各自的出液管(348 )与所述液流配置室(1、2 )相通;该液流配置室(1、2 )经其各自的输液管(11、21)与泵液腔(5 )相通;所述泵液腔(5 )通过汲液管(71)与液流泵(7)相通,该液流泵(7)的送液管(72)与所述配液器(9)相通;该配液器(9)通过各进液管(91)同位于其下方的各单体铝-空电池(34)相通; 铝-空气电池系统运行时,分别调节与所述液流配置室(1、2)相连接的所述出液管(348)的出液管开关,控制所述电池组(3)的电解液交替流入所述两液流配置室(1,2)之一,电解液在该液流配置室(I或2)、泵液腔(5)、配液器(9)和电池组(3)之间循环,而另一液流配置室(2或I)则于处于电解液静置、沉淀物沉降及排出处理过程中;位于该电池组(3)外侧的电能输出端(40+,40_)分别与所述电池组(3)的空气电极集流板(32)和铝合金电极集流板(31)相连通,并对外供电。2.根据权利要求1所述大功率铝-空气电池系统,其特征在于 所述各液流配置室(1、2)是完全对称的结构;所述各液流配置室(1、2)分别设置有用于对电解液进行加热或冷却的加热/冷却管(14、24)。3.根据权利要求1或2所述大功率铝-空气电池系统,其特征在于 所述各液流配置室(1、2)的下部分别设置带有开关(151、251)的沉淀物排出管(15、25 ),在所述各液流配置室(1、2 )壳体底部、设有令沉淀物滑向所述沉淀物排出管(15、25 )一侧的倾斜式结构。4.根据权利要求1所述大功率铝-空气电池系统,其特征在于 所述泵液腔(5)上设置有带有开关的泵液腔清洗液进液管(61)和泵液腔清洗液出液管(62),用于对所述铝-空气电池系统停止运行时的内部清洗。5.根据权利要求1所述大功率铝-空气电池系统,其特征在于 所述配液器(9)包括配液槽(92)、与该配液槽(92)相适配的上盖(93)和位于该配液槽(92)壳体外侧的显示该配液槽(92)内液面状态的液面显示器(94); 所述配液槽(92)是中部有上下可通透中空窗(95)、四周为槽渠(96)的槽形结构;与所述各单体电池(34)连通的各进液管(91)位于该槽渠(96)底部;所述液流泵(7)的送液管(72)与槽渠(96)连通;所述上盖(93)下表面有与所述配液槽(92)的中空窗(95)相适配的“口 ”字形的凸楞(931),当该上盖(93)盖在所述配液槽(92)上时,该凸楞(931)恰好套住或嵌入所述配液槽(92)的中空窗(95),构成氢气传输通道; 位于该配液器(9 )外部的电压电流调节器(81)、电流电压显示器(82 )通过位于配液槽(92)内的导电连接(84)分别与该配液槽(92)底部所述电池组(3)的铝合金电极集流板(31)和空气电极集流板(32)相连; 所述各单体电池(34)产生的氢气经配液槽(92)中空窗(95)和上盖(93)的凸楞(931)构成的氢气传输通道,由设置在所述上盖(93)上的出气口(933)向外排出。6.根据权利要求1所述大功率铝-空气电池系统,其特征在于 所述单体电池(34)是腔体结构,包括彼此分隔的进液分割室(341)、电池反应室(342 )和出液分割室(343);所述配液器(9)内的电解液经进液管(91)流至该进液分割室(341),再经该进液分割室(341)下部的进液管(3411)流入电池反应室(342);在该进液分割室(341)上方、进液管(91)中电解液流入处,装有可转动、栅格结构的进液切割器(349),从进液管(91)流出的电解液恰好注入转动的进液切割器(349)栅格上,被该进液切割器(349)的栅格斩断后流入进液分割室(341); 所述电池反应室(342)至少有一侧壁为空气电极(321),与位于在所述电池反应室(342 )内的铝合金电极(311)构成电极组;所述铝合金电极(311)内嵌在该电池反应室的定位槽(3421)中;所述铝合金电极(311)和空气电极(321)分别与该电池组(3)的铝合金电极集流板(31)和空气电极集流板(32)电连接,所产生的氢气通过该电池反应室(342)上部的敞开口进入所述配液器(9)的氢气传输通道向外排出; 所述电池反应室(342)与出液分割室(343 )由一内隔壁(345)相隔,在该内隔壁(345)上端留有溢流槽(346)令两者相通;该出液分割室(343)被一横隔分隔为上下两区汇流区(3431)和出液区(3432),横隔上设有向下导通的汇流管(3433); 所述电池反应室(342 )内的电解液经溢流槽(346 )流入所述汇流区(3431),经汇流管(3433)流入其下部的出液区(3432);所述出液区(3432)的下部有所述出液管(348)与所述两个液流配置室(1、2)相通; 在所述出液区(3432)内、汇流管(3433)管口的下方,装有可转动、栅格结构的出液切割器(3434),由汇流管(3433)流出的电解液恰好注入该出液切割器(3434)的栅格上,即该电解液是被该出液切割器(3434)的栅格斩断后才流进该出液区(3432)。7.根据权利要求6所述大功率铝-空气电池系统,其特征在于 所述电池反应室(342)的结构还可以是下部呈上大下小、有η个侧面的棱柱,该棱柱的侧面和底面均嵌装有空气电极(321);所述电池反应室内嵌插有η个棱柱形的铝合金电极(311)、与电池反应室(342)下部各侧壁的η个空电气电极(321)——对应,形成多组电极组;各所述铝合金电极(311)面向与之对应的空气电极(321) —侧,是与该空气电极(321)平行的斜面结构;η > I。8.根据权利要求6所述大功率铝-空气电池系统,其特征在于 所述进液切割器(349 )和出液切割器(3434 )是自带转轴的、可在电解液冲击下自行转动来斩断流过的电解液液流;或者是电路控制的开合结构,...

【专利技术属性】
技术研发人员:王为齐燕玲
申请(专利权)人:德阳东深新能源科技有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1