【技术实现步骤摘要】
本专利技术涉及一种,具体涉及到 用一个含有较少高斯单元的高斯混合模型快速估计噪声参数,用一个含有较多高斯单元的 高斯混合模型从含噪测试语音中估计纯净语音特征向量的特征补偿方法,属于语音识别技 术领域。
技术介绍
目前,语音识别系统在实验室理想环境下已经取得了很好的性能。然而,在实际环 境中,背景噪声和信道失真往往是不可避免的,它们会导致实际应用环境中提取的特征向 量与预先训练的声学模型严重失配,识别器的性能会急剧恶化,甚至有可能完全失效。因 此,研究语音识别的环境补偿技术,减小环境失配对语音识别系统的影响,提高语音识别系 统在实际环境中的性能,具有非常重要的意义。一般来说,环境补偿技术可划分为前端特征补偿和后端模型补偿。特征补偿对测 试环境下的语音特征进行补偿,使之与训练环境下的声学模型相匹配。模型补偿对训练环 境下的声学模型进行调整,使之与测试环境相匹配,直接对测试语音进行识别。与后端模型 补偿相比,前端特征补偿技术具有计算量小、实现灵活、与后端识别器无关的优点,因而其 应用范围更为广泛。在实际应用中,难以保证每段测试语音都有足够多的静音帧来估计噪声参数。为 ...
【技术保护点】
一种语音识别系统中基于快速噪声估计的特征补偿方法,其特征在于,包括如下步骤:(1)采用美尔频率倒谱系数作为语音识别系统的特征参数,特征补偿的目的是从含噪测试语音中提取纯净语音MFCC;(2)在训练阶段,用高斯混合模型对语音的分布进行建模,用全部训练语音生成两个GMM:第一GMM和第二GMM;(3)用单高斯模型对背景噪声进行建模,为了实时跟踪环境的变化,单高斯噪声模型的均值向量和协方差矩阵从含噪测试语音中提取;(4)用第一GMM从含噪测试语音MFCC中提取噪声参数,包括噪声的高斯均值向量和协方差矩阵;(5)用估得的噪声参数对第二GMM2的均值和方差进行参数变换,即对单高斯噪声 ...
【技术特征摘要】
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。