本发明专利技术涉及一种用于运行燃气轮机(11)的方法,所述燃气轮机(11)包括压缩机(12)、涡轮(14)和燃烧室(13),所述燃烧室(13)具有导向燃烧器组(15a)、富集预混合料燃烧器组(15b)和稀薄预混合料燃烧器组(15c),在进入的燃料气体(16)的成分变化的情况下,所述方法包括以下步骤:连续地实时测量所述燃料气体(16)的成分;以及通过利用所述实时燃料成分的测量控制所述燃气轮机(11)的运行和所述燃烧器(15a至15c)的燃烧。
【技术实现步骤摘要】
本专利技术涉及燃气轮机的技术。本专利技术涉及一种用于运行根据权利要求I前述部分所述的燃气轮机的方法。特别地,本专利技术涉及一种用于在燃料气体成分变化情况下可靠地运行燃气轮机的方法。本专利技术还涉及一种用于执行所述方法的燃气涡轮动力装置。
技术介绍
燃气轮机通常使用天然气作为燃料。天然气主要包括CH4 (甲烷)。此外,天然气也含有能够稀释或者浓缩物质的所谓非CH4成分。稀释物质的实例是N2 (氮气)和CO2 (二氧化碳)。起浓缩作用的物质通常是诸如C2H6 (乙烷)、C3H8 (丙烷)、丁烷等的较高的饱和烃 (C2+)。目前习惯以通过使用两个指标的品质(也就是,天然气的成分)为特征。这些指标一方面是热值,另一方面是沃布指数。而且直到现在已经习惯使用品质稳定的天然气运行燃气轮机。现在供气公司还不能够保证他们所供给的天然气的品质是稳定的。作为解放天然气市场的部分,天然气供给商越来越努力地优化天然气的需求和天然气的价格。其结果是从不同来源处获得的天然气被混合并且供给客户。反过来,就天然气的品质和/或成分来说,这将导致天然气高度的可变性。显然,天然气的这些变化的性能影响天然气在燃气轮机的燃烧室中的燃烧过程,并且因此显著地影响燃气轮机的运行。燃料气体的变化驱动汽轮机在汽轮机最佳运行窗口的外侧运行。这影响排放和波动行为并且降低运行的可靠性。因此,电厂运行人将来必须为天然气品质的变化做好准备。在过去(例如,参见US7,216,486或者US7,516,608)已经提出测量燃料气体的C2+烷烃含量并且在各种燃烧室和燃烧嘴之间根据燃料气体成分的不同变化燃料质量流量的分配。在US7,854,110中公开了基于燃料气体能量含量的变化率调整燃气轮机的运行参数。另一方面,已经提出(例如,参见US7, 484,352或者US2006/0040225或者US2009/0037029)变化各种燃烧室和燃烧嘴之间的燃料质量流量的分配,但与在燃烧室里引起的波动无关。但是,仍然需要使燃气轮机的运行更好地适应快速变化的燃料气体成分以便改进燃气轮机运行的稳定性和可靠性。
技术实现思路
因此,本专利技术的目的是保证即使燃料气体成分具有大范围的快速变化,所述燃气轮机总是在最优化的运行窗口中运行。本专利技术的又一目的是提供所述燃气轮机的最优化的排放和波动行为、以及运行可靠性。通过一种用于运行燃气轮机的方法实现这些和其它的目的,所述燃气轮机包括压缩机、涡轮和燃烧室,所述燃烧室具有导向燃烧器组、富集预混合料燃烧器组和稀薄预混合料燃烧器组,在进入的燃料气体成分变化的情况下,所述方法包括下列步骤连续地实时测量所述燃料气体的成分;以及通过利用所述实时燃料成分的测量控制所述燃气轮机的运行和所述燃烧器的燃Jyti o根据本专利技术的方法的一个实施例,根据所述测量的实际燃料气体成分优化在所述·导向燃烧器组、富集燃烧器组和稀薄燃烧器组之间分配所述燃料。根据本专利技术的方法3的另一个实施例,所述依赖成分的燃烧控制与依赖波动的燃烧控制相结合。根据本专利技术的所述方法的又一个实施例,在瞬态发动机运行期间,在线更新所述燃料气体的用于改善发动机控制稳定性的下限热值(LHV)和分子量(Mk)。根据本专利技术的方法的另一个实施例,使用快速红外线气体分析仪(FIRGAs)测量所述燃料气体的成分。根据本专利技术的另一个实施例,测量具有两个或者多个碳原子(C2+)的碳氢化合物的总浓度并且用作所述燃气轮机控制的输入量。根据本专利技术的又一个实施例,另外CH4、C2H6, C3H8和C的浓度也作为所述燃气轮机控制的输入量。在本专利技术的又一个实施例中,基于燃烧室波动测量的闭环控制与基于实际燃料气体成分的开环控制相结合。本专利技术的另一个实施例的特征在于,通过在线测量CH4_、C2H6-, C3H8-和CO2-的浓度估计所述燃料气体的下限热值(LHV)和分子量(Mk)。本专利技术的又一个实施例的特征在于,燃料混合设备布置在所述燃烧室的上游。本专利技术的燃气涡轮动力装置具有燃气轮机,所述燃气轮机包括压缩机、涡轮和燃烧室,所述燃烧室具有导向燃烧器组、富集预混合料燃烧器组和稀薄预混合料燃烧器组,在燃气轮机控制系统的控制下,燃料气体供给到所述燃烧器组,其特征在于,设置用于分析所述燃料气体的成分的装置,并且所述分析装置的输出端借助于分析仪输入线连接到所述燃气轮机控制系统。所述燃气涡轮动力装置的一个实施例的特征在于,对每个所述燃烧器组配置控制阀,并且所述控制阀借助于所述燃气轮机控制系统经由命令线控制。根据本专利技术的燃气涡轮动力装置的另一个实施例,燃烧波动监测和过滤系统监测所述燃烧室,并且借助于监测输入线连接到所述燃气轮机控制系统。在本专利技术的燃气涡轮动力装置的另一个实施例中,燃料混合设备设置在所述燃烧室的上游。附图说明下面将参考附图,借助于不同的实施例更精确地说明本专利技术,其中图I显示根据本专利技术的实施例的燃气涡轮动力装置的示意图,所述燃气涡轮动力装置包括快速红外线气体分析仪和专门的燃气轮机控制系统;图2显示了图I所示的燃气涡轮控制系统的细节;以及图3示范性地显示了根据本专利技术,基于快速红外线气体分析仪(FIRGAs)快速响应(与气体色谱相比较)气体成分变化的原理图。具体实施例方式增加对燃烧具有较高C2+ (较高次的碳氢化合物)含量并且所述C2+含量也具有更大,更快波动的天然气的需求摆在今天全球的燃气轮机舰队面前。本专利技术提供了一种新的控制构思,用于运行尤其是将允许适应快速变化的气体燃料品质的燃气轮机。本专利技术是基于使用两个快速红外线气体分析仪(FIRGAs)探测燃料中C2+和惰性气体含量变化的控制构思的一般想法。但是传统的气体色谱(GCs)具有量级为大约5至20分钟的响应时间(见图3),而 快速红外线传感器(FIRGAs)具有不到20秒的响应时间。本专利技术将利用红外线分析仪的这种极具优势的特性来发展当前燃料成分的接近实时的重新最佳化。图I显示根据本专利技术实施例的燃气涡轮动力装置的示意图,所述燃气涡轮动力装置包括快速红外线气体分析仪和专门的燃气轮机的控制系统。燃气涡轮动力装置10包括燃气轮机11,燃气轮机11具有压缩机12、燃烧室13和涡轮14。燃烧室13包括三个不同的燃烧器组15a至15c,也就是,导向燃烧器组15a、富集预混合料燃烧器组15b以及稀薄预混合料燃烧器组15c。各个燃烧器组供给燃料气体16,藉此借助于联合的阀V1、V2和V3控制燃料气体的质量流量。设置关闭阀14以截断总的燃料气体供给。借助于快速红外线气体分析仪17实时分析进入的燃料气体16的成分,快速红外线气体分析仪17用分析仪输入线20连接到燃气轮机控制系统18。此外,燃烧波动监测和过滤系统19用来监测燃烧室13并且经由监测输入线22向燃气轮机控制系统18提供相应数据。所述燃气轮机控制系统经由命令线21根据快速红外线气体分析仪17与监测和过滤系统19的测量结果控制阀VI、V2和V3。此外,燃料混合设备23可以设置在燃烧室13的上游。如图2所示,所述C2+含量直接进入所述燃气轮机控制系统。根据所述燃料的成分设置用于混合操作(开环控制)的燃料分配设置点。实际的LHV值和Mk值用于改进发动机的稳定性。根据所述燃料成分设置转换(SWO)和转换复位(SWB)设置点(处于开环控制)。所述高级波动控制逻辑(APCL)也本文档来自技高网...

【技术保护点】
一种用于运行燃气轮机(11)的方法,所述燃气轮机(11)包括压缩机(12)、涡轮(14)和燃烧室(13),所述燃烧室(13)具有导向燃烧器组(15a)、富集预混合料燃烧器组(15b)和稀薄预混合料燃烧器组(15c),在进入的燃料气体(16)的成分变化的情况下,所述方法包括以下步骤:连续地实时测量所述燃料气体(16)的成分;以及通过利用所述实时燃料成分的测量控制所述燃气轮机(11)的运行和所述燃烧器(15a至15c)的燃烧。
【技术特征摘要】
...
【专利技术属性】
技术研发人员:N·W·恩贝格尔,P·巴贾杰,M·肯尼恩,F·开普勒,T·C·阿姆斯勒,M·张,Z·帕夫利克,
申请(专利权)人:阿尔斯通技术有限公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。